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The goal of IPMpack is to provide a suite of demographic tools based on Integral Projection
Models (IPMs) to support biologists interested in making projections for populations where de-
mography is strongly linked to a changing continuous variable, such as size. The package includes
functions that can take data, such as size or age, as well as environmental covariates, and build
models of growth, survival and fecundity. Functions are defined that then take these statistical
models and construct IPMs. IPMpack has tools that compare different functional forms for the
underlying statistical models, plotting them and returning model scores, as well as tools for diag-
nostic tests of the IPM models themselves. There are also methods to build population models for
varying environments, use Bayesian methods to sample population parameters, estimate longevity
and passage time, sensitivity and elasticity (of either parameters or matrix elements), and much
more.

This vignette is intended to introduce the concepts of IPMs as well as the implementation
of IPMpack to biologists with a wide range of quantitative skills. This vignette is for IPMpack
version 1.5, and so we encourage users to contact the IPMpack team at IPMpack@gmail.com with
any feedback or mistakes they find. We also host a blog at R-forge (http://ipmpack.r-forge.r-
project.org/) that contains news of updates, new features, and announcements of papers and
meetings relevant to IPMs.
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1 Introduction to Integral Projection Models

An Integral Projection Model (IPM) is a demographic tool that can estimate the dynamics of
populations where individuals’ fates depend on state variables that are continuous (e.g., weight,
diameter at breast height, height, limb length, rosette diameter) or quasi-continuous (e.g., number
of leaves, age, number of reproductive structures) and may be a mixture of discrete and continuous
variables. IPMs track the distribution of individuals n across these state variables between census
times (e.g., year t and year t +1) by projecting from models that define the underlying vital rates
(e.g., survival, growth, and reproduction) as a function of the (quasi-)continuous state variables.
For detailed introductions to IPMs see Easterling et al. (2000), and Ellner & Rees (2006, 2007).

Briefly, an IPM is defined by a kernel K that represents probabilities of growth between discrete
or continuous stages, survival across these stages, and the production of offspring and offspring
recruitment. For example, in the simplest case, where the population is structured by a continuous
covariate, size, then

n(y, t + 1) =
U∫

L

K(y,x)n(x, t)dx (1)

where n(y, t + 1) is the distribution across size y of both established and new individuals in census
time t +1, n(x, t) the distribution across size of individuals in census time t, and L and U the lower
and upper size limits modeled in the IPM, respectively.

Multiple functional forms for both demographic processes as well as their error structures can
be accommodated with IPMpack. The F kernel (equation 4) describes per-capita contributions of
reproductive individuals to number of new individuals at the next census. Multiple size-dependent
or size-independent vital rates can be fitted within the F kernel, reflecting for example reproductive
probability, number of reproductive structures (e.g. flowers in plants, basidia in fungi), number of
propagules within reproductive structure (e.g. seeds in inflorescences), and so on. Additionally,
a range of constants (c1, c2, ...) can be included if there are no data for a stage. All of these
will be multiplied to obtain the eventual fertility for individuals of each size. Finally, the F kernel
definition includes a probability density function describing the size of offspring recruiting into the
population, fd .

From equation 1:

n(y, t + 1) =
U∫

L

K(y,x)n(x, t)dx =
U∫

L

[P(y,)+ F(y,x)]n(x, t)dx, (2)

where

U∫
L

P(y,x)n(x, t)dx =
U∫

L

surv(x)growth(y,x)dx, (3)

and
U∫

L

F(y,x)n(x, t)dx =
U∫

L

c1c2c3... f ec1(x) f ec2(x) f ec3(x)... fd(y,x)dx (4)

After numerically solving these kernels, key ecological and evolutionary quantities such as the
population rate of increase λ , the stable population size structure, the net reproductive rate R0,
and many others can be estimated (see Caswell 2001 for more a comprehensive discussion).

Essentially, the same tools are available for IPMs as for discrete projection matrices (matrix
population models), e.g., estimation of population growth rate, sensitivities, elasticities, life table
response experiment [LTRE] analyses, passage time calculations, etc. (Caswell 2001, Cochran &
Ellner 1992, and others); as well as some additional tools based on exploring the impact of the
underlying statistical relationships. The main difference between an IPM and a matrix model
is that while in discrete projection matrices the number of classes (i.e., number of stages in the
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life cycle of the study species) must be defined a priori, IPMs impose the discretization of the
three-dimensional surface defined by equation 1 in the last step for the purposes of numerical
integration. This produces a typically large matrix (e.g., 100 x 100 cells) that is more robust to
biases from matrix dimensionality (Zuidema et al. 2010, Salguero-Gomez & Plotkin 2010) and
sample size (Ramula et al. 2009) than classical matrix models.

The goal of IPMpack is to provide a centralized set of quantitative techniques based on IPMs
to help ecologists and evolutionary biologists model populations. IPMpack can accommodate
multiple vital rates from complex life cycles all grouped into two main sub-kernels: P and F
(equation 2) 1.

This vignette walks through the steps of a basic IPM analysis. We first describe the kind
of data necessary to build an IPM. If a user begins ‘from scratch’, they must input data in a
specific format (described below). However it is possible to jump past this step and use IPMpack
capabilities on IPMs that were developed outside of IPMpack. That is, if a user wants quick
figures, summary statistics, other analyses on an IPM matrix already built, IPMpack can readily
accommodate that. However there are some features that, because of the object-oriented coding,
require some specific structures (and other features that do not). Please refer to the manual files,
and the rest of this vignette for this information. The vignette will begin with data input. We
will then walk through how to build and analyse a basic IPM model. More complex models will
be introduced later, as well as run comparative model testing and Bayesian implementations.

2 Getting started: setting up the data for IPMpack

For users who prefer to define IPM matrices using their own statistical tools, there is no requirement
for the data to be in any particular format, and most of the functions in IPMpack will operate
on the matrices directly (e.g., life expectancy, sensitivity of matrix elements, etc.). However, to
use IPMpack’s full capacities, the individual-level demographic data must be organized in a data
frame (a class of object in R [see help file for ‘data.frame’ in base]), where each row represents
one observation of an organism in the population at one census time t with the following potential
column names:

• size: size of individuals in census time t ∗

• sizeNext: size of individuals in census time t + 1 ∗

• surv: survival of individuals from census time t to t + 1 (contains: 0 for death or 1 for
survival) ∗

• fec1, ...: as many columns as desired relating size to sexual reproduction. For example,
this might be:

– fec1: probability of reproduction (output: 0 for no reproductive or 1 for reproductive)

– fec2: number of reproductive structures (output: 1, 2, 3, ...) when individual is repro-
ductive, that is, when fec1 = 1

– fec3: number of propagules (output: 1, 2, 3, ...) per reproductive structure (e.g. seeds
per flower in reproductive plant individual)

– ...

• stage: stage of individuals in census time t, used to distinguish discrete and continuous
stages, etc. For rows in the data frame where size is not an NA, then this must be the word
“continuous”. Where size is NA, any variety of named discrete stages may be defined (e.g.
“seed bank”). If this column is missing, many procedures in IPMpack are designed to simply

1Note than in the seminal paper by Easterling et al. (2000) this kernel was referred to as P, but here we follow
the terminology by Caswell (2001) and call it P instead). The P kernel (equation 3) describes growth between
demographic censuses conditional on individuals’ survival (surv).
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fill in this column assuming that only “continuous” state variables describe the life cycle of
the species, i.e. there are no discrete stages. For running makeFecObj, the column must be
a factor. If not supplied, the function will generate this column assuming all individuals are
”continuous”.

• stageNext: stage of individuals in census time t + 1, in the simples case, “continuous” or
“dead”(which is redundant with “0” in the surv column. As above, this column is not
essential for many procedures in IPMpack. For running makeFecObj, the column must be a
factor. If not supplied, the function will generate this column assuming all individuals that
are alive are “continuous”.

• number: number of individuals corresponding to each row in the data frame. For all rows
corresponding to movement between continuous stages, this value will be 1, but for movement
between discrete stages (e.g., from “dormant seeds” to “seeds ready to germinate”) then this
number may be > 1, potentially directly reflecting observed individuals in the data. This
information avoids having a data frame with a row for every discrete stage (e.g. seed). As
above, many procedures in IPMpack will simply assume that this value is always 1.

• covariate: value of a discrete covariate in census time t, such as light environment at time
t, age at t, patch at t, etc.

• covariateNext: value of a discrete covariate in census time t + 1.

• ...any other covariates of interest, named as desired by the user are possible too (e.g., pre-
cipitation, habitat, temperature, etc).

• offspringNext: if the size contained in sizeNext corresponds to the size of an offspring,
this column will contain either the value “sexual” or “clonal” (depending on whether sexual
or clonal reproduction is being considered). If this column exists, rows that take these two
values will be excluded from the growth analyses (functions makeGrowthObj and variants
thereof, see below).

The ∗ symbol above indicates the minimum columns in the data frame required to obtain pas-
sage time and life expectancy calculations. These values form the P kernel. If sufficient additional
columns are available, a full life-cycle model, containing the F kernel, can be produced and fur-
ther analyses are possible. Although size and sizeNext can be transformed, many of the utility
functions assume no transformations in columns in the original data frame pertaining to fertility.
Transformations can be formally called in various parts of the package and appropriate F matrices
built that account for these transformations.

3 The basics: building an IPM

First, the user must install IPMpack from CRAN using install.packages("IPMpack") and then
load IPMpack into an R session (library(IPMpack)) (see help files for problems with installation
or loading).

> library(IPMpack)

Next, the user must input demographic data. As mentioned above, most functions of IPMpack
require a data file with at minimum columns called size, sizeNext, surv, where ‘size’ is size
at time t, ‘sizeNext’ is size one census later, and ‘surv’ is a series of 0s and 1s, indicating if the
individual survived or not. In the case of ‘size’ and ‘sizeNext’, data can be transformed (e.g., onto
a log scale), if appropriate via functions built into IPMpack. For the purpose of learning how to
use IPMpack, the user can either use his/her own data (adjusted to have the appropriate headings,
as aforementioned), or generate them with a function built into IPMpack:

> dff <- generateData()
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A quick check indicates that this contains sensible (fictional) information:

> head(dff)

size sizeNext surv covariate covariateNext fec stage
1 4.935713 5.413618 1 1 1 12.941646 continuous
2 5.234812 NA 0 1 0 0.000000 continuous
3 4.199088 3.145682 1 1 0 6.756261 continuous
4 2.530306 NA 0 1 1 0.000000 continuous
5 9.286730 5.955426 1 1 1 49.733022 continuous
6 5.395990 5.383181 1 0 0 0.919159 continuous

stageNext
1 continuous
2 continuous
3 continuous
4 continuous
5 continuous
6 continuous

for simplicity, no discrete covariates are included in this first example. Figure 1 (p. 6) is
produced by the following code:

> plot(dff$size, dff$sizeNext, xlab = "Size at t", ylab = "Size at t+1")

IPMpack is written in object-oriented code, using S4 objects. This means that extra object
classes are used by IPMpack, with methods assigned to those classes that do particular things to
specific objects. An example for those familiar with R is the plot function. When applied to two
vectors, it produces an x-y plot, but when applied to a fitted linear regression, it provides a series
of diagnostic plots. In other words, the ‘plot’ method is object-specific and does different things
to objects of class ‘numeric’ and objects of class ‘lm’.

IPMpack contains defined classes for growth, survival and fertility objects, and associated
methods that allow the user to build IPM objects. In addition, this object-oriented structure in
IPMpack uses methods from IPM objects to calculate life expectancy, passage times, and other
population estimates of interest. The advantage of object-oriented programming is its flexibility:
for example, the same machinery can be applied to suites of underlying regression forms and the
user can take advantage of pre-existing highly generalized R functions, such as predict. The
needs of any particular dataset may require different object and method definitions. Towards the
end of this vignette we also describe how to define a new class and a new method (e.g., a new
growth object for a specific life-history structure, and a new growth method applicable to plotting
information from that object).

As an example, let us first define objects built as simple polynomial regressions from the
generated data. The source code of generateData will confirm that the survival data is built
around a polynomial logistic regression relating size at t to survival from t to t +1, and the growth
data is built around a polynomial regression relating size at t to size at t +1. To make growth and
survival objects that reflect this, the user must implement:

> gr1 <- makeGrowthObj(dataf = dff, Formula = sizeNext~size+size2)

> sv1 <- makeSurvObj(dff, Formula = surv~size+size2)

In both these functions, the argument Formula contains formulas of the type used in linear or
logistic regressions in R, built around the possible defined range of transforms of size currently
available (size2 which is size2, size3 which is size3, and logsize which is log(size). Currently
further transforms of size are not possible. This function can also be used to fit models that
include a single discrete covariate (e.g., light environment, age, etc) as long as this exists in the
dataf in a column named covariate. For instance, the user could model the population dynamics
according to size + covariate or size + logsize*covariate, etc. For more complex analyses,
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Figure 1: Size at t and size at t+1
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other covariates (time since fire, precipitation, etc) can be fitted as long as they exist within
dataf. For the growth model, possibilities for the response variable in the Formula are: sizeNext
meaning that the reponse variable is size at the next census time, or incr meaning that the
response variable is the size increment that has accrued between the two census times (common
among tree demographic studies), and logincr meaning that the response variable is the log of
the size increment that has acrrued between the two census intervals.

Glancing at the source code will confirm that all these functions simply fit a linear regression
relating size at t+1 or increment to size at t and covariates for growth, as for survival. The survival
and growth objects created have a slot called ‘fit’ that holds the regression and a slot sd that holds
the variance around the regression.

> gr1

An object of class "growthObj"
Slot "fit":

Call:
lm(formula = Formula, data = dataf)

Coefficients:
(Intercept) size size2

0.80621 0.62672 0.01191

Slot "sd":
[1] 1.118866

Note that before building growth or survival objects in IPMpack, careful model assessement and
comparison are recommended, using all the usual regression tools available in R (plotting the fitted
lm or glm to check for patterns of residuals, outliers etc). IPMpack also contains two functions
that allow the user to check these two relationships against the data used for them in order to
explore goodness of fit and effect of mesh size, shown in Figure 2 (p. 8).

> par(mfrow = c(1, 2), bty = "l", pty = "m")

> p1 <- picGrow(dff, gr1)

> p2 <- picSurv(dff, sv1, ncuts = 30)

To build a demographic model describing survival and growth transitions from these objects, the
user can use the function createIPMPmatrix, i.e.:

> Pmatrix <- createIPMPmatrix(nBigMatrix = 50,

+ minSize = -5, maxSize = 35,

+ growObj = gr1, survObj = sv1,

+ correction = "constant")

where nBigMatrix is the numbers of bins used, minSize and maxSize define the limits of the
IPM, U and L in the equations above. Typically, these ranges should usually extend to beyond the
smallest and largest size measurement, but the user might want to exclude outliers). The objects
growObj and survObj define changes in size and survival as defined above.

IPMpack includes a useful function diagnosticsPmatrix that provides a series of plots indica-
tive of whether bin choice and size range is adequate. Applying this function as a preliminary step
before obtaining demographic and evolutionary output from IPMs can help identify basic prob-
lems in the fitting of vital rate functions or in the creation of the IPM matrices before proceeding.
Several common problems can be diagnosed with the panelled figure produced by diagnosticsP-
matrix (Figure 3).

The left panel on the first plot shows the range of the data (if the data is provided) and the
range of the state variable fitted in the matrix (top line, black). If these are mis-matched, the
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Figure 2: Growth and survival objects
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[1] "Range of Pmatrix is "
[1] 1.193501e-296 7.289948e-01
[1] "Please hit any key for the next plot"
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limits of the data used in building the Pmatrix can be adjusted with the minSize and maxSize
arguments in createIPMPmatrix. The range for two additional Pmatrices that will be used in
subsequent comparisons is also provided; one with an increased size range (red) and one with an
increased number of bins (blue).

The discretization of a continuous function can result in under- or over-estimation of the true
density. Where this is occurs, the sum of the columns of the discretized matrix will not match
predictions from the fitted survival model. The middle panel plots these against each other for
the three matrices in the first panel (current, extended range and increased bin number) using the
same colours as in the first panel. Lines should fall along the (0,1) line shown in grey; if they do
not, the argument correction="constant" in createIPMPmatrix may be of use. This ensures
that the columns sum to the fitted survival by multiplying every column in the Integral Projection
Model by the value that allows this. The third panel checks whether extending the size range
included in the matrix and increasing the number of bins (by increasing nBigMatrix and thereby
having narrower bins) does not alter basic predictions from the IPM.

The six panels on the next plot (that may not be present in the pdf of the vignette, but should
appear if you run the function) show the discretized IPM (histograms)for the current IPM (top)
and one with an increased number of bins (bottom) and the theoretical density function (red line).
These are plotted either for three chosen sizes (sizesToPlot) or the 0.25, 0.5 and 0.75 quantiles
of either the observed data (if supplied) or the range of meshpoints (if not); this size is printed in
the top right hand of every plot. If the theoretical density function curve is very distant from the
histograms, increasing the nBigMatrix argument may correct this discrepancy.

Other useful function for verifying that sufficient bins have been used include convergeLambda
and associated functions; see the help file and try them out.

The createIPMPmatrix function builds around methods defined so that it will provide ap-
propriate output whatever the survival and growth objects are (e.g. error structure, covariates).
The P matrix contains a matrix defining the transitions, but also other useful slots, e.g., the
meshpoints, covariates, grid size. The user can access this information by writing:

> slotNames(Pmatrix)

[1] ".Data" "nDiscrete" "nEnvClass" "nBigMatrix"
[5] "meshpoints" "env.index" "names.discrete"

and obtain the slots by using the @ symbol, e.g.,

> Pmatrix@meshpoints

[1] -4.6 -3.8 -3.0 -2.2 -1.4 -0.6 0.2 1.0 1.8 2.6 3.4 4.2 5.0 5.8 6.6
[16] 7.4 8.2 9.0 9.8 10.6 11.4 12.2 13.0 13.8 14.6 15.4 16.2 17.0 17.8 18.6
[31] 19.4 20.2 21.0 21.8 22.6 23.4 24.2 25.0 25.8 26.6 27.4 28.2 29.0 29.8 30.6
[46] 31.4 32.2 33.0 33.8 34.6

Finally, the user can plot the Pmatrix using persp or image (Figure 4). Next, with this, the user
can obtain the life expectancy, and passage time to a chosen size (here set at the mean) for the
range of meshpoints

> LE <- meanLifeExpect(Pmatrix)

> pTime <- passageTime(mean(dff$size, na.rm = TRUE), Pmatrix)

and the user can also plot these against Pmatrix@meshpoints to examine how life expectancy
and passage vary as a function of size (Figure 5 p. 12). The function runSimpleModel takes
as minimum arguments a data frame and a target size (i.e., here type: runSimpleModel(dff,
chosenSize = 4)) and runs this analysis to create figures for survival, growth, life expectancy
and passage time as shown so far, assuming the simplest possible models of survival and growth
(basic linear and logistic regressions, no covariates except for size, etc).

If the user defines a fertility object - which, for instance, is not always easy with for example
trees - IPMpack can also create a transition matrix describing movement between sizes attributable
to fertility.
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> fv1 <- makeFecObj(dff, Formula = fec~size,

+ Family = "gaussian",

+ Transform = "log")

> Fmatrix <- createIPMFmatrix(nBigMatrix = 50, minSize = -5,

+ maxSize = 35,

+ fecObj = fv1,

+ correction = "constant")

Note that makeFecObj will use the relationships defined in Formula and the family defined in
Family with transforms defined in Transform in the order supplied. Please note that the fecundity
Formula MUST match the Transform since IPMPack needs to combine the parameters from
Formula with the right Transform to appropriately build the F matrixs.

The default arguments required to run makeFecObj to create a fecundity object from which an F
matrix with no discrete stage can be built are offspringSplitter=data.frame(continuous=1),
vitalRatesPerOffspringType=data.frame(NA) and fecByDiscrete=data.frame(NA). Addition-
ally, note that if there are values other than “continuous” in the stage column of the data-frame
named dff in the example above, then the function will assume that multiple offspring classes
are required, and the result will be an IPM with nBigMatrix + the number of offspring classes
deduced (which is the number of names in stage other than “continuous”). This may lead to
a mismatch with the size of the P matrix unless a discrete transition matrix is explicitly being
included in the P matrix (see below, incorporating discrete stages).

If the data-frame contains an extra column offspringNext that takes the values sexual, and
that corresponds to rows where both size and sizeNext are different from NA, the user can
define a relationship between maternal size and offspring size through the makeFecObj argument
offspringSizeExplanatoryVariables. The default is to only fit an intercept, equivalent to
simply having a mean and variance of offspring size. The function makeFecObj also allows users to
simply over-write the mean and variance of offpsring size with the values of their choice (arguments
meanOffspringSize and sdOffspringSize).

The function makeClonalObj operates identically to makeFecObj except that offspring are only
considered for fitting the distribution of mean and standard deviation of offspring size if the column
offspringNext takes the values clonal. Rows where offspringNext takes the values “sexual” or
“clonal” are excluded from the survival and growth analyses (makeGrowthObj and makeSurvObj).

The user can combine the F matrix with (an identically built, i.e., same bin number, size
limits and discrete classes) survival-growth transition P matrix to obtain a full Integral Projection
Model, and its population growth rate λ , sensitivity, elasticity, etc.

> IPM <- Pmatrix + Fmatrix

> Re(eigen(IPM)$value[1])

[1] 2.287297

> sensitivity <- sens(IPM)

> elasticity <- elas(IPM)

These outputs can be plotted against the meshpoints (Figure 6 p. 14). In addition to perturbation
measures from mesh cells, the user can also obtain sensitivity and elasticity of particular parameters
that underlie the kernels, e.g., doing:

> res <- sensParams(growObj = gr1, survObj = sv1, fecObj = fv1,

+ nBigMatrix = 50, minSize = -5, maxSize = 15)

> res

$slam
grow (Intercept) grow size grow size2

0.12679864 0.26527719 0.61723834
sd growth surv (Intercept) surv size

13
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0.04612096 0.24871593 0.50958723
surv size2 offspring rel (Intercept) sd offspring
1.15612251 0.63334915 0.09474329

reprod 1 (Intercept) reprod 1 size
1.90666161 3.92885504

$elam
grow (Intercept) grow size grow size2

0.044640990 0.072601132 0.003210536
sd growth surv (Intercept) surv size

0.022534485 -0.129287945 0.063631353
surv size2 offspring rel (Intercept) sd offspring

-0.002789072 0.523013158 0.018943076
reprod 1 (Intercept) reprod 1 size

0.026534112 0.547869069

and this output can be plotted out (Figure 7 p. 16) using

> par(mfrow = c(2, 1), bty = "l", pty = "m")

> barplot(res$slam, main = expression("Parameter sensitivity of "*lambda),

+ las = 2, cex.names = 0.5)

> barplot(res$elam, main = expression("Parameter elasticity of "*lambda),

+ las = 2, cex.names = 0.5)

4 Incorporating discrete stages

Populations are often structured by both discrete and a continuous stages. For example, many
plant populations may persist for many years in a seedbank as well as having size-determined fates
after they germinate. IPMpack can incorporate this variability for complex life cycles (Ellner &
Rees 2006). To illustrate using discrete stages in an IPM, we generate data that includes both
discrete and continuous life-history stages:

> dff <- generateDataDiscrete()

A quick check indicates that these data contain several types of stage classification (and not just
”continuous” as seen up till now):

> table(dff$stage)

continuous dormant seedAge1 seedOld
950 50 35 32

Given this data structure, the user can make a fertility object that reflects the fact that propagules
(seeds in this example) produced in one year may recruit directly into the continuous phase (e.g.,
seedling), or may end up in a discrete stage (e.g., seed bank). The makeFecObj (and similar
functions) has an argument called offspringSplitter that allows the user to define these paths:

> fv1 <- makeFecObj(dataf = dff, Transform = "log",

+ offspringSplitter = data.frame(continuous = 0.2,

+ dormant = 0, seedAge1 = 0.8, seedOld = 0),

+ fecByDiscrete = data.frame(dormant = 0,

+ seedAge1 = 0, seedOld = 0))

In this example, 20% of seeds produced at t end up in the continuous part of the population
structure at t + 1 (for example, they might directly recruit as rosettes from one year to the next)

15
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and 80% of seeds recruit into the ”one year old seeds”stage. Although in this case no individuals are
recruited at t +1 into the ”dormant” or ”old seeds” stages (since these will come from adult plants
or the seed bank), they are included because offspringSplitter is where IPMpack identifies
all the existing discrete stages. The argument fecByDiscrete reflects the fact that none of the
discrete classes addressed in this example are likely to directly produce offspring (which may not
always be the case). The resulting fecundity object can be used with createIPMFmatrix in the
usual way:

> Fmatrix <- createIPMFmatrix(fecObj = fv1, nBigMatrix = 5,

+ minSize = min(dff$size, na.rm = TRUE),

+ maxSize = max(dff$size, na.rm = TRUE),

+ correction = "constant")

The user also needs a Pmatrix that reflects the same structure. The continuous part of the P
matrix will be the standard structure:

> gr1 <- makeGrowthObj(dataf = dff,

+ Formula = sizeNext~size)

> sv1 <- makeSurvObj(dff, Formula = surv~size)

Movement in and out of discrete stages is defined via an add-on of a transition matrix, that is
defined using:

> discTrans <- makeDiscreteTrans(dff)

which captures survival and transitions between discrete stages and the continuous stage (note
that this function will not work unless the data frame dff contains appropriate columns stage
and stageNext). The user can then construct the P matrix:

> Pmatrix <- createIPMPmatrix(nBigMatrix = 5,

+ growObj = makeGrowthObj(dff),

+ survObj = makeSurvObj(dff),

+ discreteTrans = discTrans,

+ correction = "constant")

Note that both the P matrix and the F matrix in this example have a rather small number of bins
just for ease of comparison, and that a higher number is almost certainly advisable. The user can
examine both matrices:

> print(Pmatrix)

An object of class "IPMmatrix"
[,1] [,2] [,3] [,4] [,5]

[1,] 3.600000e-01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
[2,] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
[3,] 0.000000e+00 4.439560e-01 4.323308e-01 0.000000e+00 0.000000e+00
[4,] 6.389308e-01 7.252744e-02 1.127820e-01 4.328572e-01 5.478123e-17
[5,] 1.069200e-03 3.432923e-08 4.688801e-18 7.080245e-25 8.082744e-02
[6,] 3.594204e-17 7.848291e-25 6.653671e-60 3.988890e-98 4.107580e-36
[7,] 2.427087e-41 8.666336e-52 3.222836e-127 7.740270e-221 7.189744e-120
[8,] 3.292355e-76 4.622163e-89 5.328345e-220 0.000000e+00 4.334520e-253

[,6] [,7] [,8]
[1,] 0.000000e+00 0.000000e+00 0.000000e+00
[2,] 0.000000e+00 0.000000e+00 0.000000e+00
[3,] 0.000000e+00 0.000000e+00 0.000000e+00
[4,] 6.173147e-64 4.697285e-147 7.617785e-265
[5,] 8.215936e-10 5.639242e-54 8.249468e-133
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[6,] 3.766237e-05 2.331819e-10 3.076971e-50
[7,] 5.946460e-50 3.321001e-16 3.952948e-17
[8,] 3.233773e-144 1.629084e-71 1.749117e-33
Slot "nDiscrete":
[1] 3

Slot "nEnvClass":
[1] 1

Slot "nBigMatrix":
[1] 5

Slot "meshpoints":
[1] 4.1 14.3 24.5 34.7 44.9

Slot "env.index":
[1] 1 1 1 1 1

Slot "names.discrete":
[1] "dormant" "seedAge1" "seedOld"

> print(Fmatrix)

An object of class "IPMmatrix"
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0 0 0 0.000000e+00 0.0000000000 0.0000000000 0.0000000000
[2,] 0 0 0 1.216967e-01 0.2189596581 0.3939576122 0.7088182433
[3,] 0 0 0 0.000000e+00 0.0000000000 0.0000000000 0.0000000000
[4,] 0 0 0 1.520160e-03 0.0027351095 0.0049210763 0.0088541218
[5,] 0 0 0 1.184053e-02 0.0213037792 0.0383302845 0.0689647924
[6,] 0 0 0 1.430495e-02 0.0257378138 0.0463081088 0.0833186904
[7,] 0 0 0 2.680614e-03 0.0048230273 0.0086777095 0.0156131487
[8,] 0 0 0 7.791399e-05 0.0001401848 0.0002522239 0.0004538074

[,8]
[1,] 0.0000000000
[2,] 1.2753232491
[3,] 0.0000000000
[4,] 0.0159305541
[5,] 0.1240831539
[6,] 0.1499090409
[7,] 0.0280915619
[8,] 0.0008165015
Slot "nDiscrete":
[1] 3

Slot "nEnvClass":
[1] 1

Slot "nBigMatrix":
[1] 5

Slot "meshpoints":
[1] -1.844074 1.128824 4.101723 7.074622 10.047521
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Slot "env.index":
[1] 1 1 1 1 1

Slot "names.discrete":
[1] "dormant" "seedAge1" "seedOld"

and check for example that the slot namesDiscrete is aligned for both of them, and add them
together:

> print(Pmatrix+Fmatrix)

[,1] [,2] [,3] [,4] [,5]
[1,] 3.600000e-01 0.000000e+00 0.000000e+00 0.000000e+00 0.0000000000
[2,] 0.000000e+00 0.000000e+00 0.000000e+00 1.216967e-01 0.2189596581
[3,] 0.000000e+00 4.439560e-01 4.323308e-01 0.000000e+00 0.0000000000
[4,] 6.389308e-01 7.252744e-02 1.127820e-01 4.343774e-01 0.0027351095
[5,] 1.069200e-03 3.432923e-08 4.688801e-18 1.184053e-02 0.1021312142
[6,] 3.594204e-17 7.848291e-25 6.653671e-60 1.430495e-02 0.0257378138
[7,] 2.427087e-41 8.666336e-52 3.222836e-127 2.680614e-03 0.0048230273
[8,] 3.292355e-76 4.622163e-89 5.328345e-220 7.791399e-05 0.0001401848

[,6] [,7] [,8]
[1,] 0.0000000000 0.0000000000 0.0000000000
[2,] 0.3939576122 0.7088182433 1.2753232491
[3,] 0.0000000000 0.0000000000 0.0000000000
[4,] 0.0049210763 0.0088541218 0.0159305541
[5,] 0.0383302854 0.0689647924 0.1240831539
[6,] 0.0463457712 0.0833186907 0.1499090409
[7,] 0.0086777095 0.0156131487 0.0280915619
[8,] 0.0002522239 0.0004538074 0.0008165015

The first three rows and columns concern transitions in and out of the discrete stages; the remainder
are the usual P and F matrices describing moving across the continuous variables. The usual types
of calculations (sensitivity via sens, life expectancy via meanLifeExpect, etc) can be applied here
too.

5 Discretely varying environments

One extension of IPMs is to create a compound IPM matrix where, in addition to moving between
continuous sizes, individuals move through discrete environments where the discrete environmental
states have an expected sequence, and therefore can be described by a transition matrix of their
own (e.g. light environments for tropical trees, as in Metcalf et al. 2009).

To explore this type of dynamic, the user needs either to provide or simulate an environmental
variable at t and the corresponding value at t + 1. Here, it has been generated as part of the
generateData function (See above). From this generated data, the user can then create an
environmental transition matrix that describes how the environment tends to move between these
states from one census time to the next. If the data has been set up as described, there is a
function that will do this for the user:

> dff <- generateData()

> env1 <- makeEnvObj(dff)

> env1

An object of class "envMatrix"
[,1] [,2]

[1,] 0.2015209 0.1990521
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[2,] 0.7984791 0.8009479
Slot "nEnvClass":
[1] 2

The user can now use IPMpack to create a survival-growth transition P matrix that encompasses
movement across environments, first redefining the survival and growth objects to fit a discrete
covariate, by changing the Formula argument:

> gr1 <- makeGrowthObj(dff, Formula = sizeNext~size+covariate)

> sv1 <- makeSurvObj(dff, Formula = surv~size+covariate)

Note that these functions will only work appropriately for a discrete covariate if the value of the
covariate at time t is available as a column in the data frame names covariate and the value of
the covariate at the next census is available as a column in the data frame called covariateNext.
IPMpack functions use the presence of a column in the data frame called covariate as a cue to
renumber values in these two columns to numeric levels between 1 and the observed number of
covariate levels to facilitate looping, and changes them into factors. Once this step is implemented,
these functions can be used to create a compound P matrix, using createCompoundPmatrix:

> Pmatrix <- createCompoundPmatrix(nBigMatrix = 50, minSize = -5,

+ maxSize = 35,

+ envMatrix = env1, growObj = gr1,

+ survObj = sv1,

+ correction = "constant")

Essentially, the compound P matrix is a large matrix with stacked IPMs corresponding to each
environment, modified to reflect movement between environmental states defined by env1. Passage
time can be calculated using a similar function, but now including the environmental matrix as
an argument (equivalent life expectancy functions are in development):

> pTimes <- stochPassageTime(Pmatrix@meshpoints[15], Pmatrix, env1)

The resulting vectors contain the life expectancy and time to reach each size for individuals starting
in each different environmental class, concatenated together (i.e. there are nBigMatrix values
in the LE matrix ranging over the first environment, then nBigMatrix values ranging over the
second environment, etc). The user can plot these against meshpoints (Figure 9 p. 22), each colour
indicates a different starting environment. Similar syntax can be used for passage time (although
note that here the function name has changed):

Adding a fertility object to this analysis, the user can also define a full life cycle IPM model for
across environments. With such information, obtaining the stochastic population rate of increase
λs in this environment is relatively straight-forward. IPMpack does this by sampling a very large
number of environments and corresponding IPMs, and multiplying them together (Childs et al.
2004). At the moment, this is only defined for the case where environments (defined by the
discrete covariates) are distributed independently (i.e. the next state does not depend on the
previous state). To do this, the user must first define a list of IPMs (each the sum of a matrix
of survival-growth transitions, and a matrix of fecundity transitions corresponding to a particular
environment):

> IPMlist <- makeListIPMs(dataf = dff, nBigMatrix = 25, minSize = -5,

+ maxSize = 35, explSurv = surv~size+covariate,

+ explGrow = sizeNext~size+size2+covariate,

+ explFec = fec~size, Transform="log",correction = "constant")

surv ~ size + covariate

Note that in this example IPMpack uses an arbitrary selection of formulas for the various linear
and logistic regressions (explGrow, explSurv, etc). In reality, model selection will need to be used
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to establish this. Importantly, each environment type requires sufficient data (years of data) to
quantify population behaviours in that environment as if it were an IPM in a single environment.
Next, the user can estimate λs using:

> stochGrowthRateSampleList(listIPMmatrix = IPMlist,

+ nRunIn = 30, tMax = 50)

[1] 0.9547839

where nRunIn defines the number of time steps to discard from the start of the time series in
order to remove transient dynamics, and tMax is the total number of time steps to run, and should
be large enough that increasing it does not substantially change the result (numbers presented
here for efficiency are almost certaintly not large enough). Note that stoch.growth.rate in the
package popbio will operate in essentially the same way, and provides more information, more
efficiently.

6 More generally varying environments

An alternative way of inhabiting stochastic environments is to experience continuously changing
covariates (rather than moving between discrete states, as the above describes). In this case,
rather than building a single megamatrix, desired variables are obtained by multiplying up a suite
of matrices and relying on the weak ergodic theorem for convergence (e.g., Tuljapurkar 1990; as
described for obtaining λs, above). IPMpack contains code to do this. The user must first define a
new data frame containing several time-varying covariates, and then, build the associated survival,
growth and fertility objects (note that the default in IPMpack is to assume that if you have a
covariate called ”coviariate”, your aim is to build a compound matrix, so ideally other covariates
should have other names):

> dff <- generateDataStoch()

> sv1 <- makeSurvObj(dataf = dff,

+ Formula = surv~size+covariate1+covariate3)

> gr1 <- makeGrowthObj(dataf = dff,

+ Formula = sizeNext~size+covariate1+covariate2)

> fv1 <- makeFecObj(dataf = dff, fecConstants = data.frame(1.8),

+ Formula = fec~size, Transform = "log")

As before, the user can explore the data:

> head(dff)

size sizeNext surv covariate1 covariate2 covariate3 fec stage
1 5.046822 2.848632 1 -0.8692021 -1.4081790 -0.53049454 0.000000 continuous
2 5.122226 6.336954 1 0.2761578 -0.3760437 -0.51855107 0.000000 continuous
3 6.562597 6.118441 1 -0.2201403 -0.4569242 -0.44969679 18.518760 continuous
4 4.253431 NA 0 0.2214643 -0.8302942 -0.08001949 0.000000 continuous
5 4.338178 NA 0 1.7069979 -1.2938951 -0.77262064 4.949404 continuous
6 6.492411 4.666749 1 -0.7737929 1.5737515 0.65133797 0.000000 continuous

stageNext number
1 continuous 1
2 continuous 1
3 continuous 1
4 continuous 1
5 continuous 1
6 continuous 1

and glance at the objects, e.g.,
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> gr1

An object of class "growthObj"
Slot "fit":

Call:
lm(formula = Formula, data = dataf)

Coefficients:
(Intercept) size covariate1 covariate2

0.98441 0.90103 2.99469 0.02489

Slot "sd":
[1] 0.2300746

To explore demographic projections for this model, the user must decide on a time scale and time
length, and define it by a vector called ‘tVals’. This time series can be used to reflect patterns in
environmental data that repeat. In this example we set tVals to reflect monthly intervals over 4
years, with years as the time scale and build covariates that vary seasonally, i.e., they fluctuates
randomly around a sine wave which peaks once a year. From this simulation, the user can generate
a matrix containing time as rows and different covariates in columns.

> tVals <- seq(1, 4, by = 1/12)

> covTest <- c(1 + 0.5*sin(2*pi*tVals))

> covMatTest <- data.frame(covariate1 = rnorm(length(covTest), covTest, 0.5) - 1,

+ covariate2 = rnorm(length(covTest), covTest, 0.5) - 1,

+ covariate3 = rnorm(length(covTest), covTest, 0.5) - 1)

Note that if there is no apparent temporal pattern to the data, one could simply generate random
normal distributions of the covariates using their observed mean and variance. Other types of
temporal patterns (multiannual, etc) are also possible. With this setup, the user can then estimate
the stochastic growth rate over these years, using the geometric mean of the population growth
rate (Tuljapurkar 1990; Childs et al. 2004), for these particular covariates using:

> r <- stochGrowthRateManyCov(covariate = covMatTest, nRunIn = 12*1,

+ tMax = length(tVals), growthObj = gr1,

+ survObj = sv1, fecObj = fv1, nBigMatrix = 20,

+ minSize = 2*min(dff$size, na.rm = TRUE),

+ maxSize = 1.5*max(dff$size, na.rm = TRUE),

+ nMicrosites = 50, correction = "constant")

> print(r)

[1] 0.01617276

Setting nRunIn = 12 ∗ 1 in this example is equivalent to discarding the first year of the simula-
tion (likely to contain transients) since the chosen time step is months.Note that in this formula,
it was assumed that density-dependence acts on seedling establishment, and that 50 microsites
are available for seedling establishment in every time step. Setting nMicrosites = 0 allows for
calculations without density-dependence, and nMicrosites can also be a vector, if the number of
microsites fluctuates through time. It may also be interesting to have a glance at what has been
happening to the population structure over this time-course, and the function trackPopStruct-
ManyCov allows this. IPMpack also contains a dedicated function to depict the results from this,
plotResultsStochStruct.
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7 Parameter uncertainty in a constant environment

To illustrate parameter uncertainty in a constant environment, we generate data again, and from
these data build a list of survival and growth objects reflecting the parameter posteriors of fitted
linear and logistic regression models (taking the simplest case of structure only via a continuous
covariate). Note that it is also possible (and simpler) to directly use the variance-covariance of pa-
rameters estimates from a maximum-likelihood fit (via glm or lm) to build a list of growth, survival
or fertility objects reflecting parameter uncertainty (see the help file for getListRegObjects) but
here we illustrate the Bayesian case.

> dff <- generateData()

> grlist <- makePostGrowthObjs(dff,

+ explanatoryVariables = "size",

+ burnin = 100, nitt = 400)

> svlist <- makePostSurvivalObjs(dff,

+ explanatoryVariables = "size",

+ burnin = 100, nitt = 400)

This function currently only uses default non-informative priors features. There is a default thin-
ning in MCMCglmm, the engine used to derive the posteriors, that reduces simulations by 10.
So the number of samples from the posterior used in this simple example nitt is rather small
(resulting in only [nitt - burnin] / 10 = 30), and larger numbers are advisable (the default in
MCMCglmm is 50,000). With output from this, the user can make a list containing multiple P
matrices:

> PmatrixList <- makeListPmatrix(grlist, svlist, nBigMatrix = 20,

+ minSize = -5,

+ maxSize = 35,

+ correction = "constant")

If one of the lists is longer than the other, this function samples the shorter object at random to
reach the size of the longer object. Note that in this example the matrix size is rather small just
to save time, and larger number of bins are advisable. The function will also construct compound
matrices, if an environmental matrix is provided. With this, the user can now obtain posteriors
for constant environment models.

> res <- getIPMoutput(PmatrixList, targetSize = 5, FmatrixList = NULL)

> names(res)

[1] "LE" "pTime" "lambda" "stableStage"

The vector called λ and matrix called stableSize, etc, will consist of NAs, unless a list of Fmatrices
is also provided, which would allow a complete population projection matrix to be built. IPMpack
contains a similar function to obtain a list of F matrices, and if such a list is included as the third
argument into the function getIPMOutput (for which the default is ‘NULL’), the function will also
return distributions of λ , the stable stage distribution, etc:

> fv <- makePostFecObjs(dff, explanatoryVariables = "size+size2", fecConstants=data.frame(0.01),

+ burnin = 100, nitt = 400, Transform = "log")

[1] 30

> FmatrixList <- makeListFmatrix(fv, nBigMatrix = 20, minSize = -5,

+ maxSize = 35, cov = FALSE,

+ correction = "constant")

> res <- getIPMoutput(PmatrixList, targetSize = 5, FmatrixList)
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Figure 10: Uncertainty in IPM output
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Again, larger numbers of iterations, binsizes, etc, are recommended. These results can be
visually inspected too (Figure 10 p. 26):

This is a rather slow way of proceeding - a large number of IPMs are being stored in R’s
memory. A slightly more rapid approach is to use the function getIPMOutputDirect that builds
an IPM from a sample from the posterior, calculates relevant parameters, then over-writes this
with a rebuilt IPM, iterating though the list.

8 Building your own objects and methods

What if growth is best reflected by a saturating function, rather than by the linear regression
models provided? In this case the user may want to define a new class of growth object. An
example of this follows:

> setClass("growthObjSaturate", representation(paras = "numeric", sd = "numeric"))

Then define the functional form of the mean prediction, with relevant parameters:

> fSaturate <- function(size, pars) {

+ u <- exp(pmin(pars[1] + pars[2] * size, 50))

+ u <- pars[3] * 1/(1+u)

+ return(u)

+ }

where the third parameter indicates the asymptotic size. The user can then estimate the param-
eters by fitting this function to the data using a wrapper function and the R function optim.

> wrapSaturate <- function(par, dataf) {

+ pred <- fSaturate(dataf$size, par[1:3])

+ ss <- sum((pred - dataf$sizeNext)^2, na.rm = TRUE)

+ return(ss)

+ }

> tmp <- optim(c(1, 1, 1), wrapSaturate, dataf = dff, method = "Nelder-Mead")

> tmp

$par
[1] 1.9127838 -0.4181216 7.9057335

$value
[1] 470.8127

$counts
function gradient

272 NA

$convergence
[1] 0

$message
NULL

For simplicity, one can assume normally distributed errors:

> resids <- fSaturate(dff$size, tmp$par) - dff$sizeNext

> sdSaturate <- sd(resids, na.rm = TRUE)

With these parameters, the user can then define the new growth object:
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> gr1 <- new("growthObjSaturate")

> gr1@paras <- tmp$par

> gr1@sd <- sdSaturate

Finally, the user must define a method appropriate for this type of object.

> setMethod("growth", c("numeric", "numeric", "numeric", "growthObjSaturate"),

+ function(size, sizeNext, cov, growthObj){

+ mux <- fSaturate(size, growthObj@paras)

+ sigmax <- growthObj@sd

+ u <- dnorm(sizeNext, mux, sigmax, log = F)

+ return(u);

+ })

[1] "growth"

By putting growthObjSaturate in the signature, R will use this particular method for all objects
with this signature. Now, the user can go ahead and use all the other code as previously, without
a need for further definitions.

If the user wishes to fit a growth model with, for example, gamma errors, a similar approach can
be used, but with ‘dgamma’ instead of dnorm in the last line of growth method, and appropriate
slots defined in the object, etc.
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