
IPMpack: an R package for demographic modeling with

Integral Projection Models (v.1.0)

Jessica Metcalf, Sean M. McMahon, Rob Salguero-Gomez, Eelke Jongejans

March 27, 2012

The goal of IPMpack is to provide a suite of demographic tools based on Integral Projection
Models (IPMs) to support biologists interested in making projections for populations where de-
mography is strongly linked to a continuous variable, such as size. The package includes functions
that can take data, such as size or age, as well as environmental covariates, and build models of
growth, survival and fecundity. Functions are defined that then take these statistical models and
construct IPMs. IPMpack has tools that compare different functional forms for the underlying
statistical models, plotting them and returning AIC scores, as well as tools for diagnostic tests
of the IPM models themselves. There are also methods to build population models for varying
environments, use Bayesian methods to sample population parameters, estimate longevity and
passage time, sensitivity and elasticity (of either parameters or matrix elements), and much more.

This vignette is intended to introduce the biologists with a wide range of quantitative skills
to the concepts of IPMs as well as the implementation of IPMpack. This vignette is for IPMpack
version 1.0, and so we encourage users to contact the IPMpack team at IPMpackTeam@gmail.com
with any feedback or mistakes they find. We also host a blog at R-forge IPMpack Web Site that
contains news of updates, new features, and announcements of papers and meetings relevant to
IPMs.

1

IPMpackTeam@gmail.com
http://ipmpack.r-forge.r-project.org/

1 Introduction to Integral Projection Models

An Integral Projection Model (IPM) is a demographic tool to explore the dynamics of populations
where individuals’ fates depend on state variables that are continuous (e.g., weight, diameter at
breast height, height, limb length, rosette diameter) or quasi-continuous (e.g., number of leaves,
age, number of reproductive structures) and may be a mixture of discrete and continuous. IPMs
track the distribution of individuals n across these state variables between census times (e.g., year
t and year t + 1) by projecting from models that define the underlying vital rates (e.g., survival,
growth, and reproduction) as a function of the (quasi-)continuous state variables. For detailed
introductions to IPMs, see Easterling et al. (2000), and Ellner & Rees (2006, 2007).

Briefly, an IPM is defined by a kernel K that represents probabilities of growth between discrete
or continuous stages, survival across these stages, and the production of offspring and offspring
recruitment. For example, in the simplest case, where the population is structured by a continuous
covariate, size, then

n(y, t + 1) =

U∫
L

K(y,x)n(x, t)dx (1)

where n(y, t + 1) is the distribution across size y of both established and new individuals in census
time t +1, n(x, t) the distribution across size of individuals in census time t, and L and U the lower
and upper size limits modeled in the IPM, respectively.

Multiple functional forms for both demographic processes as well as their error structures
can be easily accommodated with IPMpack. The F kernel (equation 4) describes per-capita
contributions of reproductive individuals to number of new individuals at the next census. Multiple
size-dependent or size-independent vital rates can be fitted within the F kernel, reflecting for
example reproductive probability, number of reproductive structures (e.g. flowers in plants, basidia
in fungi), number of propagules within reproductive structure (e.g. seeds for plants), and so
on. Additionally, a range of constants (c1, c2, ...) can be included if there are no data for a
stage. Finally, the F kernel definition includes a probability density function describing the size
of offspring recruiting into the population, fd ,

n(y, t + 1) =

U∫
L

K(y,x)n(x, t)dx =

U∫
L

[T (y,)+ F(y,x)]n(x, t)dx (2)

n(y, t + 1) =

U∫
L

T (y,x)n(x, t)dx =

U∫
L

surv(x)growth(y,x)dx (3)

n(y, t + 1) =

U∫
L

F(y,x)n(x, t)dx =

U∫
L

c1c2c3... f ec1(x) f ec2(x) f ec3(x)... fd(y,x)dx (4)

After numerically solving these kernels, key ecological and evolutionary quantities such as the
population rate of increase λ , the stable population size structure, the net reproductive rate R0,
and many others can be estimated (see Caswell 2001 for more a comprehensive discussion).

Essentially, the same tools are available for IPMs as for discrete projection matrices (matrix
population models), e.g., estimation of population growth rate, sensitivities, elasticities, life table
response experiment [LTRE] analyses, passage time calculations, etc (Caswell 2001, Cochran &
Ellner 1992, and others). The main difference between an IPM and a matrix model is that while
in discrete projection matrices the number of classes (i.e., number of stages in the life cycle of the
study species) must be defined a priori, IPMs impose the discretization of the three-dimensional
surface defined by equation 1 in the last step. This produces a typically large matrix (e.g., 100 x
100 cells) that is more robust to biases from matrix dimensionality (Zuidema et al. 2010, Salguero-
Gomez & Plotkin 2010) and sample size (Ramula et al. 2009) than classical matrix models.

2

The goal of IPMpack is to provide a centralized set of quantitative techniques based on IPMs to
help ecologists and evolutionary biologists model populations. IPMpack v. 1.0 can accommodate
multiple vital rates from complex life cycles all grouped into two main sub-kernels: T and F
(equation 2) 1.

This vignette will now walk through the steps of a basic IPM analysis. We first describe the
kind of data necessary to build an IPM. If a user begins ‘from scratch’, they must input data in a
specific format (described below). However it is possible to jump past this step and use IPMpack
capabilities on IPMs that were developed outside of IPMpack. That is, if a user wants quick
diagnostic routines, figures and summary statistics on an IPM matrix already built, IPMpack can
readily accommodate that. However there are some features that, because of the object-oriented
coding require some specific structures (and other features that do not). Please refer to the manual
files and the rest of this vignette for this information. But however a user wants to implement
IPMpack, the vignette will begin at the beginning with data set up. We will then walk through
how to build and analyse a basic IPM model. More complex models will be introduced later, with
options to create unique class objects and methods, as well as run comparative model testing and
Bayesian implementations.

2 Getting started: setting up the data for IPMpack

For users who prefer to define IPM matrices using their own statistical tools, there is no requirement
for the data to be in any particular format, and most of the functions in IPMpack will operate on
the matrices directly (e.g., life expectancy, sensitivity of matrix elements, etc). However, to use
IPMpack’s full capacities, the individual-level demographic data must be organized in a specific
format in R: a data frame where each row represents one observation of an organism in the
population at one census time t with the following column names:

• size: size of individuals in census time t ∗

• sizeNext: size of individuals in census time t + 1 ∗

• surv: survival of individuals from census time t to t + 1 (contains: 0 for death or 1 for
survival) ∗

• fec1, ...: as many columns as desired relating size to sexual reproduction. For example,
this might be:

– fec1: probability of reproduction (output: 0 for no reproductive or 1 for reproductive)

– fec2: number of reproductive structures (output: 1, 2, 3, ...) when individual is repro-
ductive, that is, when fec1 = 1

– fec3: number of propagules (output: 1, 2, 3, ...) per reproductive structure (e.g. seeds
per flower in reproductive plant individual)

– ...

The default construction for the analytical part of IPMpack is such that any columns for
which the column label contains ” f ec” will be included in the analysis of the reproductive
part of the life cycle (kernel F) automatically. This default can be over-ridden so that specific
columns are identified for IPMpack functions to use.

• stage: stage of individuals in census time t. For rows in the data frame where size is not
an NA, then this must be the word “continuous”. Where size is NA, any variety of named
discrete stages may be defined (e.g. “seed bank”). If this column is missing, many procedures
in IPMpack are designed to simply fill in this column assuming that only “continuous” state
variables describe the life cycle of the species, i.e. there are no discrete stages.

1Note than in the seminal paper by Easterling et al. (2000) this kernel was referred to as P, but here we follow
the terminology by Caswell (2001) and call it T instead). The T kernel (equation 3) describes growth between
demographic censuses conditional on individuals’ survival (surv).

3

• stageNext: stage of individuals in census time t + 1; likewise, this column is not essential
for many procedures in IPMpack.

• number: number of individuals corresponding to each row in the data frame. For all rows
corresponding to movement between continuous stages, this value will be 1, but for movement
between discrete stages (e.g., from “dormant seeds” to “seeds ready to germinate”) then this
number may be > 1, potentially directly reflecting observed individuals in the data. This
information avoids having a data frame with a row for every discrete stage (e.g. seed). As
above, many proceedures in IPMpack will simply assume that this value is always 1.

• covariate: value of a discrete covariate in census time t, such as light environment at time
t, age at t, patch at t, etc.

• covariateNext: value of a discrete covariate in census time t + 1.

• ...any other covariates of interest, named as desired by the user are possible too (e.g., pre-
cipitation, habitat, temperature, etc).

The ∗ symbol above indicates the minimum columns in the data frame required to obtain
passage time and life expectancy calculations. These values form the T kernel. If sufficient
additional columns are available, a full life-cycle model, containing the F kernel, can be produced
and further analyses are possible. Although size and sizeNext can be transformed, many of the
utility functions assume no transformations in columns in the original data frame pertaining to
fertility. Transformations can be formally called in various parts of the package and appropriate
F matrices built that account for these transformations. In addition, users may also define IPMs
independently, and then introduce them into IPMpack for application of further utility functions
(sensitivities, stochastic growth rates, etc).

3 The basics: building an IPM

First, the user must load the IPMpack package from cran into R.

> library("IPMpack")

Next, the user must input demographic data. As mentioned above, most functions of IPMpack
require a data file with at minimum columns called size, sizeNext, surv, where ‘size’ is size
at time t, ‘sizeNext’ is size one census later, and ‘surv’ is a series of 0s and 1s, indicating if the
individual survived or not. In the case of ‘size’ and ‘sizeNext’, data can be transformed (e.g., onto
a log scale), if appropriate via functions built into IPMpack. For the purpose of learning how to
use IPMpack, the user can either use his/her own data (adjusted to have the appropriate headings,
as aforementioned), or generate them with a function built into IPMpack:

> dff <- generateData()

A quick check indicates that this contains sensible (fictional) information:

> head(dff)

size sizeNext surv covariate covariateNext fec stage

1 2.806499 2.498310 0 1 0 0.00000 continuous

2 6.389832 6.347761 0 1 0 23.43529 continuous

3 1.751808 1.914361 0 1 0 0.00000 continuous

4 6.208809 5.737164 1 1 1 0.00000 continuous

5 NA -2.086134 NA 1 0 NA <NA>

6 5.393184 5.175194 1 1 0 20.91347 continuous

stageNext

4

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

● ●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0 2 4 6 8 10

−
2

0
2

4
6

8
10

Size at t

S
iz

e
at

 t+
1

Figure 1: Size at t and size at t+1

1 continuous

2 continuous

3 continuous

4 continuous

5 continuous

6 continuous

for simplicity, no discrete covariates are included in this first example. Figure 1 (p. 5) is
produced by the following code:

> plot(dff$size, dff$sizeNext, xlab = "Size at t", ylab = "Size at t+1")

IPMpack is written in object-oriented code, using R S4 objects. This means that extra object
classes are used by IPMpack, with methods assigned to those classes that do particular things to
specific objects. An example for those familiar with R is the plot function. When applied to two
vectors, it produces an x-y plot, but when applied to a fitted linear regression, it provides a series
of diagnostic plots. In other words, the ’plot’ method is object-specific and does different things
to objects of class ’numeric’ and objects of class ’lm’.

IPMpack contains defined classes for growth, survival and fertility objects, and associated
methods that allow the user to build IPM objects. In addition, this object-oriented structure in
IPMpack uses methods from IPM objects to calculate life expectancy, passage times, and other
population estimates of interest. The advantage of object-oriented programming is its flexibility:

5

for example, the same machinery can be applied to suites of underlying regression forms and the
user can take advantage of pre-existing highly generalized R functions, such as predict. The
needs any particular dataset may require different object and method definitions. Towards the
end of this vignette we also describe how to define a new class and a new method (e.g., a new
growth object for a specific life-history structure, and a new growth method applicable to plotting
infomration from that object).

As an example, let us first define objects built as simple polynomial regressions from the
generated data. The source code of generateData will confirm that the survival data is built
around a polynomial logistic regression relating size at t to survival from t to t +1, and the growth
data is built around a polynomial regression relating size at t to size at t +1. To make growth and
survival objects that reflect this, the user must implement:

> gr1 <- makeGrowthObj(dataf = dff, explanatoryVariables = "size+size2",

+ responseType = "sizeNext")

> sv1 <- makeSurvObj(dff, explanatoryVariables = "size+size2")

In both these functions, the argument explanatoryVariables contains formulas of the type used
in linear or logistic regressions in R, built around the possible defined range of transforms of size
currently available (size2 which is size2, size3 which is size3, and logsize which is log(size).
Currently further transforms of size are not possible. This function can also be used to fit models
that include a single discrete covariate (e.g., light environment, age, etc) as long as this exists
in the dataf in a column named covariate. For instance, the user could model the population
dynamics according to size + covariate or size + logsize*covariate, etc. For the growth
model, possibilities for responseType are: sizeNext meaning that the reponse variable is size at
the next census time, or incr meaning that the response variable is the size increment that has
accrued between the two census times (common among tree demographic studies), and logincr

meaning that the response variable is the log of the size increment that has acrrued between the
two census intervals.

Below, the functions makeGrowthObjManyCov and makeSurvObjManyCov are introduced, which
allow any covariates that exist in dataf to be fitted (e.g., size + temperature + site, etc) via
the argument explanatoryVariables. The functions are different from the above, since in this
case, a slightly different type of growth and survival object needs to be defined to allow slightly
different growth and survival methods to be applied.

Glancing at the source code will confirm that all these functions simply fit a linear regression
relating size at t+1 or increment to size at t and covariates for growth, as for survival. The survival
and growth objects created have a slot called ‘fit’ that holds the regression.

> gr1

An object of class "growthObj"

Slot "fit":

Call:

lm(formula = Formula, data = dataf)

Coefficients:

(Intercept) size size2

0.012271 0.909032 -0.009607

IPMpack contains two functions that allow the user to check these two relationships against the
data used for them in order to explore goodness of fit and effect of mesh size, shown in Figure 2
(p. 7).

> par(mfrow = c(1, 2), bty = "l", pty = "m")

> p1 <- picGrow(dff, gr1)

> p2 <- picSurv(dff, sv1, ncuts = 30)

6

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0 2 4 6 8 10

−
2

0
2

4
6

8
10

Growth

Size at t

S
iz

e
at

 t+
1

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

Survival

Size at t

S
ur

vi
va

l t
o

t+
1

Figure 2: Growth and survival objects

7

To build a demographic model describing survival and growth transitions from these objects, the
user can use the function createIPMTmatrix, i.e.:

> Tmatrix <- createIPMTmatrix(nBigMatrix = 50,

+ minSize = -5, maxSize = 35,

+ growObj = gr1, survObj = sv1,

+ correction = "constant")

where nBigMatrix is the number of bins used, minSize and maxSize define the limits of the IPM,
U and L in the equations above. Typically, these range should usually extend to beyond the
smallest and largest size measurement, but the user might want to exclude outliers). The objects
growObj and survObj define changes in size and survival as defined above. IPMpack includes
an useful function diagnosticsTmatrix that provides a series of plots indicative of whether bin
choice and size range is adequate. Applying this function as a preliminary step before obtaining
demographic and evolutionary output from IPMs is highly recommended at this stage (see ?di-

agnosticsTmatrix for details). The argument correction = "constant" will rectify some of
the more egregious numerical slippage in the model defined above, but it will do this in a slightly
arbitrary way (i.e. simply adding a constant value to all elements of each column in the matrix,
which may or may not be appropriate), so it is worth exploring options in detail.

The createIPMTmatrix function builds around methods defined so that it will provide appro-
priate output whatever the survival and growth objects are (e.g. error structure, covariates...).
The T matrix contains a matrix defining the transitions, but also other useful slots, e.g., the
meshpoints, etc. The user can access this information by writing:

> slotNames(Tmatrix)

[1] ".Data" "nDiscrete" "nEnvClass" "nBigMatrix"

[5] "meshpoints" "env.index" "names.discrete"

and finally, the user can plot the Tmatrix using persp (Figure 3). Next, with this, the user can
obtain the life expectancy, and passage time to a chosen size (here set at the mean) for the range
of meshpoints

> LE <- meanLifeExpect(Tmatrix)

> pTime <- passageTime(mean(dff$size, na.rm = TRUE), Tmatrix)

and the user can also plot these againts Tmatrix@meshpoints to examine how life expectancy
and passage vary as a function of size (Figure 4 p. 10). The function run.Simple.Model takes
as minimum arguments a data frame and a target size (i.e., here type: runSimpleModel(dff,

chosenSize = 4)) and runs this analysis to create figures for survival, growth, life expectancy
and passage time as shown so far, assuming the simplest possible models of survival and growth
(basic linear and logistic regressions, no covariates, etc).

If the user defines a fertility object -which for instance is not always easy with for example
trees- IPMpack can also create a transition matrix describing movement between sizes attributable
to fertility.

> fv1 <- makeFecObj(dff, explanatoryVariables = "size",

+ Family = "gaussian",

+ Transform = "log")

> Fmatrix <- createIPMFmatrix(nBigMatrix = 50, minSize = -5,

+ maxSize = 35,

+ fecObj = fv1,

+ correction = "constant")

Note that makeFecObj can either just scan the dataf and extract all the columns that contain
the letters ”fec” (the default, as explained above) and fit them in alphabetical sequence using
the predictors defined in explanatoryVariables and using the family defined in Family with

8

Size at t

0 10 20 30

S
iz

e
at

 t+
1

0

10

20

30
T

m
atrix

0.00

0.05

0.10

0.15

Figure 3: Transition matrix encompassing survival and growth transitions only

9

0 2 4 6 8 10

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Size

M
ea

n
lif

e
ex

pe
ct

an
cy

−4 −2 0 2 4

0
1

2
3

4
5

6

Size at start

T
im

e
to

 r
ea

ch
 c

ho
se

n
si

ze

Figure 4: Associated Life Expectancy and Passage Time

10

0 10 20 30

0.
0

0.
4

0.
8

Size

S
ta

bl
e

si
ze

 s
tr

uc
tu

re

0 10 20 30

0
10

20
30

Sensitivity

Size at t

S
iz

e
at

 t+
1

0 10 20 30

0
10

20
30

Elasticity

Size at t

S
iz

e
at

 t+
1

Figure 5: Measures off a full IPM

transforms defined in Transform (in the alphabetical sequence); or fecNames can be defined in an
argument to makeFecObj, and this tells R which columns to select and fit fertility predictors to as
in the previous, where Family, Transform etc, will be applied in the order fecNames. Please note
that the fecundity columns must not be transformed in the data frame if makeFecObj function
is used since IPMpack will perform appropriate transformations in the fitting according to the
argument Transform and will use these appropriately in functions designed to build the F matrix.

The user can combine the F matrix with (an identically built, i.e., same bin number, size
limits and discrete classes) survival-growth transition T matrix to obtain a full Integral Projection
Model, and its population growth rate λ , sensitivity, elasticity, etc.

> IPM <- Tmatrix + Fmatrix

> eigen(IPM)$value[1]

[1] 1.111165+0i

> sensitivity <- sens(IPM)

> elasticity <- elas(IPM)

These outputs can be plotted against the meshpoints (Figure 5 p. 11). In addition to perturbation
measures from mesh cells, the user can also obtain sensitivity and elasticity of particular parameters
that underlie the kernels, e.g., doing:

11

> res <- sensParams(growObj = gr1, survObj = sv1, fecObj = fv1,

+ nBigMatrix = 50, minSize = -5, maxSize = 15)

> res

$slam

grow (Intercept) grow size grow size2

0.03145552 -0.06018462 0.12154386

sd growth surv (Intercept) surv size

1.38943973 0.10322456 -0.19871523

surv size2 reprod 1 (Intercept) reprod 1 size

0.40013624 1.61992159 -3.25013146

$elam

grow (Intercept) grow size grow size2

0.0003860209 -0.0547124837 -0.0011676819

sd growth surv (Intercept) surv size

1.5382482687 -0.1368480323 -0.0739903955

surv size2 reprod 1 (Intercept) reprod 1 size

-0.0082961948 0.8567972448 -0.7745460631

> plot(1:10)

and this output can be plotted out (Figure 6 p. 13) using

> par(mfrow = c(2, 1), bty = "l", pty = "m")

> barplot(res$slam, main = expression("Parameter sensitivity of "*lambda),

+ las = 2, cex.names = 0.5)

> barplot(res$elam, main = expression("Parameter elasticity of "*lambda),

+ las = 2, cex.names = 0.5)

> plot(1:10)

4 Discretely varying environments

A first possible extension of IPMs is to create a compound IPM matrix where, in addition to mov-
ing between continuous sizes, individuals move through discrete environments where the discrete
environmental states have an expected sequence, and therefore can be described by a transition
matrix of their own (e.g. light environments for tropical trees, as in Metcalf et al. 2009).

To explore this type of dynamics, the user needs to either provide or simulate an environmental
variable at t and the corresponding value at t + 1. Here, it has been generated as part of the
generateData function (See above). From this generated data, the user can then create an
environmental transition matrix, which describes how the environment tends to move between
these states from one census time to the next. If the data has been set up as described, there is a
function that will do this for the user:

> env1 <- makeEnvObj(dff)

> env1

An object of class "envMatrix"

[,1] [,2]

[1,] 0.1908302 0.1709845

[2,] 0.8091698 0.8290155

Slot "nEnvClass":

[1] 2

12

gr
ow

 (
In

te
rc

ep
t)

gr
ow

 s
iz

e

gr
ow

 s
iz

e2

sd
 g

ro
w

th

su
rv

 (
In

te
rc

ep
t)

su
rv

 s
iz

e

su
rv

 s
iz

e2

re
pr

od
 1

 (
In

te
rc

ep
t)

re
pr

od
 1

 s
iz

e

Parameter sensitivity of λ

−3
−2
−1

0
1

gr
ow

 (
In

te
rc

ep
t)

gr
ow

 s
iz

e

gr
ow

 s
iz

e2

sd
 g

ro
w

th

su
rv

 (
In

te
rc

ep
t)

su
rv

 s
iz

e

su
rv

 s
iz

e2

re
pr

od
 1

 (
In

te
rc

ep
t)

re
pr

od
 1

 s
iz

e

Parameter elasticity of λ

−0.5

0.0

0.5

1.0

1.5

Figure 6: Sensitivity and elasticity of parameter values

13

The user can now use IPMpack to create a survival-growth transition T matrix that encompasses
movement across environments, first redefining the survival and growth objects to fit a discrete
covariate, by changing the explanatoryVariables argument:

> gr1 <- makeGrowthObj(dff, explanatoryVariables = "size+covariate")

> sv1 <- makeSurvObj(dff, explanatoryVariables = "size+covariate")

Note that these functions will only work appropriately for a discrete covariate if the value of the
covariate at time t is available as a column in the data frame names covariate and the value of
the covariate at the next census is available as a column in the data frame called covariateNext.
IPMpack functions use the presence of a column in the data frame called covariate as a cue to
renumber values in these two columns to numeric levels between 1 and the observed number of
covariate levels to facilitate looping, and changes them into factors. Once this step is implemented,
the user can use these functions to create a compound T matrix, using createCompoundTmatrix:

> Tmatrix <- createCompoundTmatrix(nBigMatrix = 50, minSize = -5,

+ maxSize = 35,

+ envMatrix = env1, growObj = gr1,

+ survObj = sv1,

+ correction = "constant")

Essentially, the compound T matrix is a large matrix with stacked IPMs corresponding to each
environment, modified to reflect movement between environmental states defined by env1. Passage
time can be calculated using similar function, but now including the environmental matrix as an
argument (equivalent life expectancy functions are in development):

> pTimes <- stochPassageTime(Tmatrix@meshpoints[15], Tmatrix, env1)

The resulting vectors contain the life expectancy and time to reach each size for individuals starting
in each different environmental class, concatenated together (i.e. there are nBigMatrix values
in the LE matrix ranging over the first environment, then nBigMatrix values ranging over the
second environment, etc). The user can plot these against meshpoints (Figure 7 p. 15), each colour
indicates a different starting environment. Similar syntax can be used for passage time (although
note that here the function name has changed).

(Figure 7) :
With a fertility object, the user can also define a full life cycle IPM model for this environ-

ment. With such an information, obtaining the stochastic population rate of increase λs in this
environment is relatively straight-forward. IPMpack does this by sampling a very large number
of environments and corresponding IPMs, and multiplying them together (Childs et al. 2004). At
the moment, this is only defined for the case where environments (defined by the discrete covari-
ates) are distributed independently (i.e. the next state does not depend on the previous state).
To do this, the user must first define a list of IPMs (each the sum of a matrix of survival-growth
transitions, and a matrix of fecundity transitions corresponding to a particular environment):

> IPMlist <- makeListIPMs(dataf = dff, nBigMatrix = 25, minSize = -5,

+ maxSize = 35, explSurv = "size+covariate",

+ explGrow = "size+size2+covariate",

+ explFec = "size", Transform="log",correction = "constant")

Note that in this example IPMpack uses an arbitrary selection of explanatory variables for all
the various linear and logistic regressions (explGrow, explSurv, etc). In reality, careful model
selection will be used to establish this. Additionally, the number of environment types should in
principle be greater than the two or three used here. Next, the user can estimate λs using:

> stochGrowthRateSampleList(listIPMmatrix = IPMlist,

+ nRunIn = 30, tMax = 50)

[1] 0.1477817

14

−4 −2 0 2 4 6

0
2

4
6

8

Current size

T
im

e
to

 r
ea

ch
 c

ho
se

n
si

ze

Figure 7: Life expectancy and passage time for a compound IPM; different colours reflect predic-
tions for individuals starting in different environments

15

where nRunIn defines the number of time steps to discard from the start of the time series in order
to remove transient dynamics, and tMax is the total number of time steps to run, and should be
large enough that increasing it does not substantially change the result (numbers presented here
for efficiency are almost certaintly not large enough).

5 More generally varying environments

An alternative way of inhabiting stochastic environments is to experience continuously changing
covariates (rather than moving between discrete states, as the above describes). In this case,
rather than building a single megamatrix, desired variables are obtained by multiplying up a suite
of matrices and relying on the weak ergodic theorem for convergence (as described for obtaining
λs, above). IPMpack contains code to do this. The user must first define a new data frame
containing several time-varying covariates, and then, build the associated survival, growth and
fertility objects:

> dff <- generateDataStoch()

> sv1 <- makeSurvObjManyCov(dataf = dff,

+ explanatoryVariables = "size+covariate1+covariate3")

> gr1 <- makeGrowthObjManyCov(dataf = dff,

+ explanatoryVariables = "size+covariate1+covariate2")

> fv1 <- makeFecObj(dataf = dff, fecConstants = 1.8,

+ explanatoryVariables = "size", Transform = "log")

As before, the user can explore the data:

> head(dff)

size sizeNext surv covariate1 covariate2 covariate3 fec

1 2.885054 10.4057225 1 2.3199714 0.1231658 -1.4165218 0.000000

2 3.886421 5.2734144 1 0.3076201 -1.3530175 -0.6365406 10.406257

3 6.758380 2.0670601 1 -1.6168324 0.9119594 -1.0787861 5.080208

4 7.186362 11.0838296 0 1.2423584 -0.6417213 -0.8814846 5.539764

5 3.428358 0.5147924 1 -1.1804576 1.3026109 0.5673148 0.000000

6 7.329566 8.6889859 0 0.3024010 0.5400673 0.7198264 0.334733

stage stageNext number

1 continuous continuous 1

2 continuous continuous 1

3 continuous continuous 1

4 continuous continuous 1

5 continuous continuous 1

6 continuous continuous 1

and glance at the objects, e.g.,

> gr1

An object of class "growthObjMultiCov"

Slot "fit":

Call:

lm(formula = Formula, data = dataf)

Coefficients:

(Intercept) size covariate1 covariate2

1.00535 0.89854 3.00418 0.01053

16

From these data, to explore predicted demographic outcomes for the model, the user must decide
on a time scale and length for investigation, and define it by a vector called ‘tVals’, here set to
reflect monthly intervals over 4 years, with years as the time scale. With this, the user can then
generate a time series that should look like the time series observed in the data. In the example
below, covariates that vary seasonally were simulated, i.e., they fluctuates randomly around a sine
wave which peaks once a year (‘covTest’), and from this generate a matrix containing time as
rows, and different covariates in columns.

> tVals <- seq(1, 4, by = 1/12)

> covTest <- c(1 + 0.5*sin(2*pi*tVals))

> covMatTest <- data.frame(covariate1 = rnorm(length(covTest), covTest, 0.5) - 1,

+ covariate2 = rnorm(length(covTest), covTest, 0.5) - 1,

+ covariate3 = rnorm(length(covTest), covTest, 0.5) - 1)

Note that if there is no apparent temporal pattern to the data one could simply generate random
normal distributions of the covariates using their observed mean and variance. Other types of
temporal patterns (multiannual, etc) are also possible. With this setup, the user can then estimate
the stochastic growth rate over these years, using the geometric mean of the population growth
rate (Tuljapurkar 1990; Childs et al. 2004), for these particular covariates using:

> r <- stochGrowthRateManyCov(covariate = covMatTest, nRunIn = 12*1,

+ tMax = length(tVals), growthObj = gr1,

+ survObj = sv1, fecObj = fv1, nBigMatrix = 20,

+ minSize = 2*min(dff$size, na.rm = TRUE),

+ maxSize = 1.5*max(dff$size, na.rm = TRUE),

+ nMicrosites = 50, correction = "constant")

> print(r)

[1] 0.987173

Setting nRunIn = 12∗1 in this example is equivalent to discarding the first 1 years (likely to contain
transients) since the chosen time step is months. Note that in this formula, it was assumed that
density-dependence acts on seedling establishment, and that 50 microsites are available for seedling
establishment in every time step. Setting nMicrosites = 0 allows for calculations without density-
dependence, and nMicrosites can also be a vector, if the number of microsites fluctuates through
time. It may also be interesting to have a glance at what has been happening to the population
structure over this time-course, and the function trackPopStructManyCov allows this; IPMpack
also contains a dedicated function to depict the results from this, plotResultsStochStruct.

6 Incorporating discrete stages

Populations are often structured by both discrete and a continuous stages, for example, many
plant populations may persist for many years in a seedbank as well as having size-determined
fates after they germinate. IPMpack can incorporate this variability for complex life cycles (Ellner
& Rees 2006). To illustrate this, the user must first generate data that includes both discrete and
continuous life-history stages:

> dff <- generateDataDiscrete()

A quick check indicates that these data contain several types of stage classification (and not just
”continuous” as seen up till now):

> table(dff$stage)

continuous dormant seedAge1 seedOld

950 50 35 32

17

Given this data structure, the user can make a fertiliy object that reflects the fact that propagules
(e.g., seeds) produced in one year may directly recruit into the continuous phase (e.g., seedling),
or may end up in a discrete stage (e.g., seed bank). The makeFecObj (and similar functions) have
an argument that allows the user to define this dichotomy, called offspringSplitter:

> fv1 <- makeFecObj(dataf = dff, Transform = "log",

+ offspringSplitter = data.frame(continuous = 0.2,

+ dormant = 0, seedAge1 = 0.8, seedOld = 0),

+ fecByDiscrete = data.frame(dormant = 0,

+ seedAge1 = 0, seedOld = 0))

In this example, 20 % of seeds produced at t end up in the continuous part of the population
structure at t + 1 (for example, they might directly recruit as rosettes from one year to the next)
and 80 % of seeds recruit into the ”one year old seeds” stage. Although in this case no individuals
are recruited at t + 1 into the ”dormant” or ”old seeds” stages (since these will come from adult
plants or the seed bank), they are included as offspringSplitter is where IPMpack identifies
all the existing discrete stages. The argument fecByDiscrete reflects the fact that none of the
discrete classes addressed in this example are likely to directly produce offspring (which may not
always be the case). The resulting fecundity object can be used with createIPMFmatrix in the
usual way:

> Fmatrix <- createIPMFmatrix(fecObj = fv1, nBigMatrix = 5,

+ minSize = min(dff$size, na.rm = TRUE),

+ maxSize = max(dff$size, na.rm = TRUE),

+ correction = "constant")

The user also needs a Tmatrix that reflects the same structure. The continuous part of the T
matrix will be broadly the same as usual:

> gr1 <- makeGrowthObj(dataf = dff,

+ explanatoryVariables = "size", responseType = "sizeNext")

> sv1 <- makeSurvObj(dff, explanatoryVariables = "size")

Movement in and out of discrete stages is defined via an add-on of a transition matrix, that is
defined using:

> discTrans <- makeDiscreteTrans(dff)

which captures survival and transitions between discrete stages and the continuous stage (note
that this function will not work unless the data frame dff contains appropriate columns stage

and stageNext) and then the user can construct the T matrix using:

> Tmatrix <- createIPMTmatrix(nBigMatrix = 5,

+ growObj = makeGrowthObj(dff),

+ survObj = makeSurvObj(dff),

+ discreteTrans = discTrans,

+ correction = "constant")

Note that both the T matrix and the F matrix in this example have a rather small number of bins
just for ease of comparison, and that a higher number is almost certainly advisable. The user can
examine both matrices:

> print(Tmatrix)

An object of class "IPMmatrix"

[,1] [,2] [,3] [,4] [,5]

[1,] 3.400000e-01 0.000000e+00 0.000000e+00 1.492286e-02 6.092293e-01

[2,] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

18

[3,] 0.000000e+00 4.439560e-01 4.323308e-01 0.000000e+00 0.000000e+00

[4,] 6.599942e-01 7.252747e-02 1.127820e-01 4.666330e-01 1.243166e-15

[5,] 5.819908e-06 4.930842e-10 2.923067e-09 9.522882e-24 3.426492e-02

[6,] 1.307667e-30 2.242134e-32 1.239056e-29 8.090281e-94 3.931629e-36

[7,] 7.486566e-75 6.819047e-69 8.590045e-63 2.861285e-211 1.878008e-117

[8,] 1.092127e-138 1.387100e-119 9.739863e-109 0.000000e+00 3.734433e-246

[,6] [,7] [,8]

[1,] 1.822808e-01 1.746484e-03 8.726415e-07

[2,] 0.000000e+00 0.000000e+00 0.000000e+00

[3,] 0.000000e+00 0.000000e+00 0.000000e+00

[4,] 6.320556e-59 2.380402e-139 8.577481e-246

[5,] 2.352899e-09 1.196812e-53 5.824558e-124

[6,] 3.646311e-07 2.504977e-15 1.646525e-49

[7,] 2.352373e-52 2.182649e-24 1.937653e-22

[8,] 6.317729e-145 7.917101e-81 9.492617e-43

Slot "nDiscrete":

[1] 3

Slot "nEnvClass":

[1] 1

Slot "nBigMatrix":

[1] 5

Slot "meshpoints":

[1] 4.1 14.3 24.5 34.7 44.9

Slot "env.index":

[1] 1 1 1 1 1

Slot "names.discrete":

[1] "dormant" "seedAge1" "seedOld"

> print(Fmatrix)

An object of class "IPMmatrix"

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0 0 0 0.000000e+00 0.000000e+00 0.0000000000 0.000000000

[2,] 0 0 0 1.109736e-01 1.973337e-01 0.3508996823 0.623971362

[3,] 0 0 0 0.000000e+00 0.000000e+00 0.0000000000 0.000000000

[4,] 0 0 0 8.802745e-04 1.565308e-03 0.0027834376 0.004949521

[5,] 0 0 0 1.054140e-02 1.874477e-02 0.0333320260 0.059271156

[6,] 0 0 0 1.415459e-02 2.516975e-02 0.0447569600 0.079587024

[7,] 0 0 0 2.131153e-03 3.789627e-03 0.0067387306 0.011982840

[8,] 0 0 0 3.597915e-05 6.397828e-05 0.0001137665 0.000202300

[,8]

[1,] 0.0000000000

[2,] 1.1095486265

[3,] 0.0000000000

[4,] 0.0088012600

[5,] 0.1053962300

[6,] 0.1415219962

[7,] 0.0213079396

[8,] 0.0003597308

19

Slot "nDiscrete":

[1] 3

Slot "nEnvClass":

[1] 1

Slot "nBigMatrix":

[1] 5

Slot "meshpoints":

[1] -0.7344903 1.7789274 4.2923450 6.8057627 9.3191804

Slot "env.index":

[1] 1 1 1 1 1

Slot "names.discrete":

[1] "dormant" "seedAge1" "seedOld"

and check for example that the slot namesDiscrete is aligned between them, and add them
together:

> print(Tmatrix+Fmatrix)

[,1] [,2] [,3] [,4] [,5]

[1,] 3.400000e-01 0.000000e+00 0.000000e+00 1.492286e-02 6.092293e-01

[2,] 0.000000e+00 0.000000e+00 0.000000e+00 1.109736e-01 1.973337e-01

[3,] 0.000000e+00 4.439560e-01 4.323308e-01 0.000000e+00 0.000000e+00

[4,] 6.599942e-01 7.252747e-02 1.127820e-01 4.675133e-01 1.565308e-03

[5,] 5.819908e-06 4.930842e-10 2.923067e-09 1.054140e-02 5.300969e-02

[6,] 1.307667e-30 2.242134e-32 1.239056e-29 1.415459e-02 2.516975e-02

[7,] 7.486566e-75 6.819047e-69 8.590045e-63 2.131153e-03 3.789627e-03

[8,] 1.092127e-138 1.387100e-119 9.739863e-109 3.597915e-05 6.397828e-05

[,6] [,7] [,8]

[1,] 0.1822807717 0.001746484 8.726415e-07

[2,] 0.3508996823 0.623971362 1.109549e+00

[3,] 0.0000000000 0.000000000 0.000000e+00

[4,] 0.0027834376 0.004949521 8.801260e-03

[5,] 0.0333320283 0.059271156 1.053962e-01

[6,] 0.0447573246 0.079587024 1.415220e-01

[7,] 0.0067387306 0.011982840 2.130794e-02

[8,] 0.0001137665 0.000202300 3.597308e-04

The first three rows and columns concern transitions in and out of the discrete stages; the remainder
are the usual T and F matrices describing moving across the continuous variables. The usual types
of calculations (sensitivity via sens, life expectancy via meanLifeExpect, etc) can be applied here
too.

7 Parameter uncertainty in a constant environment

First, the user must generate data again, and from them, a list of survival and growth objects
reflecting the parameter posteriors of the fitted linear and logistic regression (taking the simplest
case of structure only via a continuous covariate):

> dff <- generateData()

> grlist <- makePostGrowthObjs(dff,

20

+ explanatoryVariables = "size",

+ burnin=20,nitt = 40)

> svlist <- makePostSurvivalObjs(dff,

+ explanatoryVariables = "size",

+ burnin=20,nitt = 40)

Note that the data must not contain NAs. This function can also be used to set priors, etc. Note
that the number of samples from the posterior used here nitt is rather small, and larger numbers
are advisable. With output from this, the user can make lists of the T matrices:

> TmatrixList <- makeListTmatrix(grlist, svlist, nBigMatrix = 20,

+ minSize = -5,

+ maxSize = 35,

+ correction = "constant")

If one of the lists is longer than the other, this function samples the shorter object at random
to reach the size of the longer object. Note that in this example the matrix size is rather small
just to save time, and larger number of bins are advisable. The function will also construct
compound matrices, if an environmental matrix is provided. With this, the user can now obtain
some posteriors for constant environment models.

> res <- getIPMoutput(TmatrixList, targetSize = 5, FmatrixList = NULL)

> names(res)

[1] "LE" "pTime" "lambda" "stableStage"

The vector called λ and matrix called stableSize, etc, will consist of NAs, unless a list of Fmatrices
is also provided, so that a complete population projection matrix can be built. IPMpack contains
a similar function to obtain a list of F matrices, and if such a list is included as the third argument
into the function getIPMOutput (for which the default is ‘NULL’), the function will also return
distributions of λ , the stable stage distribution, etc:

> fv <- makePostFecObjs(dff, explanatoryVariables = "size+size2", fecConstants=0.01,

+ burnin=20,nitt = 40, Transform = "log")

[1] 2

> FmatrixList <- makeListFmatrix(fv, nBigMatrix = 20, minSize = -5,

+ maxSize = 35, cov = FALSE,

+ correction = "constant")

> res <- getIPMoutput(TmatrixList, targetSize = 5, FmatrixList)

Again, larger number of iterations, binsize, etc, are recommended. The results can be visually
inspected too (Figure 8 p. 22)

This is a rather slow way of proceeding - a large number of IPMs are being stored in R’s
memory. A slightly more rapid approach is to use the function getIPMOutputDirect that builds
an IPM from a sample from the posterior, calculates relevant parameters, then over-writes this
with a rebuilt IPM, etc.

8 Building your own objects and methods

If growth is best reflected by a saturating function, rather than the linear regression models
provided, the user must define a new class of growth object:

> setClass("growthObjSaturate", representation(paras = "numeric", sd = "numeric"))

[1] "growthObjSaturate"

21

0 2 4 6 8 10

1.
5

2.
5

3.
5

4.
5

Size

Li
fe

 e
xp

ec
ta

nc
y

0 1 2 3 4 5

0
1

2
3

4
5

Size

P
as

sa
ge

 ti
m

e

0 10 20 30

0.
0

0.
4

0.
8

Size

S
ta

bl
e.

si
ze

λ

6 7 8 9 10 11 12

0.
0

0.
4

0.
8

Figure 8: Uncertainty in IPM output

22

Then define the functional form of the mean prediction, with relevant parameters:

> fSaturate <- function(size, pars) {

+ u <- exp(pmin(pars[1] + pars[2] * size, 50))

+ u <- pars[3] * 1/(1+u)

+ return(u)

+ }

where the third parameter indicates the asymptotic size. The user can then estimate the param-
eters by fitting this function to the data using a wrapper function and optim.

> wrapSaturate <- function(par, dataf) {

+ pred <- fSaturate(dataf$size, par[1:3])

+ ss <- sum((pred - dataf$sizeNext)^2, na.rm = TRUE)

+ return(ss)

+ }

> tmp <- optim(c(1, 1, 1), wrapSaturate, dataf = dff, method = "Nelder-Mead")

> tmp

$par

[1] 2.0316033 -0.3653209 9.4566275

$value

[1] 1053.132

$counts

function gradient

326 NA

$convergence

[1] 0

$message

NULL

For simplicity, one can assume normally distributed errors:

> resids <- fSaturate(dff$size, tmp$par) - dff$sizeNext

> sdSaturate <- sd(resids, na.rm = TRUE)

With these parameters, the user can then define the new growth object:

> gr1 <- new("growthObjSaturate")

> gr1@paras <- tmp$par

> gr1@sd <- sdSaturate

Finally, the user must define a method appropriate for this type of object.

> setMethod("growth", c("numeric", "numeric", "numeric", "growthObjSaturate"),

+ function(size, sizeNext, cov, growthObj){

+ mux <- fSaturate(size, growthObj@paras)

+ sigmax <- growthObj@sd

+ u <- dnorm(sizeNext, mux, sigmax, log = F)

+ return(u);

+ })

[1] "growth"

23

By putting growthObjSaturate in the signature, R will use this particular method for all objects
with this signature. Now, the user can go ahead and use all the other code as previously, without
a need for further definitions.

If the user wishes to fit a growth model with, for example, gamma errors, a similar approach can
be used, but with ‘dgamma’ instead of dnorm in the last line of growth method, and appropriate
slots defined in the object, etc.

Selected References

• Caswell. 2001. Matrix population models: analysis, construction and interpretation. 2nd
ed. Sinauer. Massachussetts, USA.

• Childs, Rees, Rose, Grubb & Ellner. 2004. Evolution of size-dependent flowering in a
variable environment: Construction and analysis of a stochastic integral projection model.
Proc. Roy. Soc. Lond. Ser. B. 271: 471–475.

• Cochran & Ellner. 1995. Simple methods for calculating age-based life history parameters
for stage-structured populations. Ecological Monographs 62: 345-364.

• Ellner & Rees. 2006. Integral projection models for species with complex life-histories.
American Naturalist 167: 410-428.

• Metcalf, Horvitz, Tuljapurkar & Clark. 2009. A time to grow and a time to die: a new way
to analyze the dynamics of size, light, age and death of tropical trees. Ecology 90: 2766-2778.

• Rees & Rose. 2002. Evolution of flowering strategies in Oenothera glazioviana: an integral
projection model approach. Proc. Roy. Soc. Lond. Ser. B. 269: 1509-1515.

• Ramula, Rees & Buckley. 2009. Integral projection models perform better for small de-
mographic data sets than matrix population models: a case study of two perennial herbs.
Journal of Applied Ecology 46: 1048-1053.

• Salguero-Gomez & Plotkin. 2010. Matrix dimensionality bias demographic inferences: im-
plications for comparative plant demography. The American Naturalist 176: 710-722

• Tuljapurkar. 1990. Population Dynamics in Variable Environments. Springer. New York,
USA.

• Zuidema, Jongejans, Chien, During & Schieving. 2010. Integral Projection Models for trees:
a new parameterization and a validation of model output. Journal of Ecology 98: 345-355.

24

	Introduction to Integral Projection Models
	Getting started: setting up the data for IPMpack
	The basics: building an IPM
	Discretely varying environments
	More generally varying environments
	Incorporating discrete stages
	Parameter uncertainty in a constant environment
	Building your own objects and methods

