
As the need grows for conceptualization,
formalization, and abstraction in biology, so too does math-
ematics’ relevance  to the field (Fagerström et al. 1996). Math-
ematics is particularly important for analyzing and charac-
terizing random variation of, for example, size and weight of
individuals in populations, their sensitivity to chemicals, and
time-to-event cases, such as the amount of time an individ-
ual needs to recover from illness. The frequency distribution
of such data is a major factor determining the type of statis-
tical analysis that can be validly carried out on any data set.
Many widely used statistical methods, such as ANOVA (analy-
sis of variance) and regression analysis, require that the data
be normally distributed, but only rarely is the frequency dis-
tribution of data tested when these techniques are used.

The Gaussian (normal) distribution is most often assumed
to describe the random variation that occurs in the data from
many scientific disciplines; the well-known bell-shaped curve
can easily be characterized and described by two values: the
arithmetic mean ̄x and the standard deviation s, so that data
sets are commonly described by the expression x̄ ± s. A his-
torical example of a normal distribution is that of chest mea-
surements of Scottish soldiers made by Quetelet, Belgian
founder of modern social statistics (Swoboda 1974). In ad-
dition, such disparate phenomena as milk production by
cows and random deviations from target values in industrial
processes fit a normal distribution.

However, many measurements show a more or less skewed
distribution. Skewed distributions are particularly common
when mean values are low, variances large, and values cannot
be negative, as is the case, for example, with species abundance,
lengths of latent periods of infectious diseases, and distribu-
tion of mineral resources in the Earth’s crust. Such skewed dis-
tributions often closely fit the log-normal distribution (Aitchi-
son and Brown 1957, Crow and Shimizu 1988, Lee 1992,
Johnson et al. 1994, Sachs 1997). Examples fitting the normal
distribution, which is symmetrical, and the log-
normal distribution, which is skewed, are given in Figure 1.
Note that body height fits both distributions.

Often, biological mechanisms induce log-normal distrib-
utions (Koch 1966), as when, for instance, exponential growth

is combined with further symmetrical variation: With a mean
concentration of, say, 106 bacteria, one cell division more—
or less—will lead to 2 × 106—or 5 × 105—cells. Thus, the range
will be asymmetrical—to be precise, multiplied or divided by
2 around the mean. The skewed size distribution may be
why “exceptionally” big fruit are reported in journals year af-
ter year in autumn. Such exceptions, however, may well be the
rule: Inheritance of fruit and flower size has long been known
to fit the log-normal distribution (Groth 1914, Powers 1936,
Sinnot 1937).

What is the difference between normal and log-normal
variability? Both forms of variability are based on a variety
of forces acting independently of one another. A major 
difference, however, is that the effects can be additive or 
multiplicative, thus leading to normal or log-normal 
distributions, respectively.
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Some basic principles of additive and multiplicative
effects can easily be demonstrated with the help of two
ordinary dice with sides numbered from 1 to 6. Adding the
two numbers, which is the principle of most games, leads to
values from 2 to 12, with a mean of 7, and a symmetrical
frequency distribution. The total range can be described as
7 plus or minus 5 (that is, 7 ± 5) where, in this case, 5 is not
the standard deviation. Multiplying the two numbers, how-
ever, leads to values between 1 and 36 with a highly skewed
distribution. The total variability can be described as 6 mul-
tiplied or divided by 6 (or 6 ×/ 6). In this case, the symme-
try has moved to the multiplicative level.

Although these examples are neither normal nor log-
normal distributions, they do clearly indicate that additive
and multiplicative effects give rise to different distributions.
Thus, we cannot describe both types of distribution in the
same way. Unfortunately, however, common belief has it
that quantitative variability is generally bell shaped and
symmetrical. The current practice in science is to use sym-
metrical bars in graphs to indicate standard deviations or
errors, and the sign ± to summarize data, even though the
data or the underlying principles may suggest skewed dis-
tributions (Factor et al. 2000, Keesing 2000, Le Naour et al.
2000, Rhew et al. 2000). In a number of cases the variabili-
ty is clearly asymmetrical because subtracting three stan-
dard deviations from the mean produces negative values, as
in the example 100 ± 50. Moreover, the example of the dice
shows that the established way to characterize symmetrical,
additive variability with the sign ± (plus or minus) has its
equivalent in the handy sign ×/ (times or divided by), which
will be discussed further below.

Log-normal distributions are usually characterized in
terms of the log-transformed variable, using as parameters
the expected value, or mean, of its distribution, and the
standard deviation. This characterization can be advanta-

geous as, by definition, log-normal distribu-
tions are symmetrical again at the log level.

Unfortunately, the widespread aversion to
statistics becomes even more pronounced as
soon as logarithms are involved. This may be
the major reason that log-normal distribu-
tions are so little understood in general,
which leads to frequent misunderstandings
and errors. Plotting the data can help, but
graphs are difficult to communicate orally. In
short, current ways of handling log-normal
distributions are often unwieldy.

To get an idea of a sample, most people
prefer to think in terms of the original
rather than the log-transformed data. This
conception is indeed feasible and advisable
for log-normal data, too, because the famil-
iar properties of the normal distribution
have their analogies in the log-normal dis-
tribution. To improve comprehension of
log-normal distributions, to encourage

their proper use, and to show their importance in life, we
present a novel physical model for generating log-normal
distributions, thus filling a 100-year-old gap. We also
demonstrate the evolution and use of parameters allowing
characterization of the data at the original scale.
Moreover, we compare log-normal distributions from a
variety of branches of science to elucidate patterns of vari-
ability, thereby reemphasizing the importance of log-
normal distributions in life.

A physical model demonstrating the
genesis of log-normal distributions
There was reason for Galton (1889) to complain about col-
leagues who were interested only in averages and ignored ran-
dom variability. In his thinking, variability was even part of
the “charms of statistics.” Consequently, he presented a sim-
ple physical model to give a clear visualization of binomial and,
finally, normal variability and its derivation.

Figure 2a shows a further development of this “Galton
board,” in which particles fall down a board and are devi-
ated at decision points (the tips of the triangular obstacles)
either left or right with equal probability. (Galton used sim-
ple nails instead of the isosceles triangles shown here, so his
invention resembles a pinball machine or the Japanese game
Pachinko.) The normal distribution created by the board re-
flects the cumulative additive effects of the sequence of de-
cision points.

A particle leaving the funnel at the top meets the tip of the
first obstacle and is deviated to the left or right by a distance
c with equal probability. It then meets the corresponding tri-
angle in the second row, and is again deviated in the same man-
ner, and so forth. The deviation of the particle from one row
to the next is a realization of a random variable with possible
values +c and –c, and with equal probability for both of them.
Finally, after passing r rows of triangles, the particle falls into 

Figure 1. Examples of normal and log-normal distributions. While the
distribution of the heights of 1052 women (a, in inches; Snedecor and
Cochran 1989) fits the normal distribution, with a goodness of fit p value of
0.75, that of the content of hydroxymethylfurfurol (HMF, mg·kg–1) in 1573
honey samples (b; Renner 1970) fits the log-normal (p = 0.41) but not the
normal (p = 0.0000). Interestingly, the distribution of the heights of women
fits the log-normal distribution equally well (p = 0.74).
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one of the r + 1 receptacles at the bottom. The probabilities
of ending up in these receptacles, numbered 0, 1,...,r, follow
a binomial law with parameters r and p = 0.5.When many par-
ticles have made their way through the obstacles, the height of
the particles piled up in the several receptacles will be ap-
proximately proportional to the binomial probabilities.

For a large number of rows, the probabilities approach a
normal density function according to the central limit theo-
rem. In its simplest form, this mathematical law states that the
sum of many (r) independent, identically distributed random
variables is, in the limit as r→∞, normally distributed. There-
fore, a Galton board with many rows of obstacles shows nor-
mal density as the expected height of particle piles in the re-
ceptacles, and its mechanism captures the idea of a sum of r
independent random variables.

Figure 2b shows how Galton’s construction was modified
to describe the distribution of a product of such variables,
which ultimately leads to a log-normal distribution. To this
aim, scalene triangles are needed (although they appear to be
isosceles in the figure), with the longer side to the right. Let
the distance from the left edge of the board to the tip of the
first obstacle below the funnel be xm. The lower corners of the

first triangle are at xm · c and xm/c (ignoring the gap neces-
sary to allow the particles to pass between the obstacles).
Therefore, the particle meets the tip of a triangle in the next
row at X = xm · c, or X = xm /c, with equal probabilities for both
values. In the second and following rows, the triangles with
the tip at distance x from the left edge have lower corners at
x · c and x/c (up to the gap width). Thus, the horizontal po-
sition of a particle is multiplied in each row by a random vari-
able with equal probabilities for its two possible values c and
1/c.

Once again, the probabilities of particles falling into any re-
ceptacle follow the same binomial law as in Galton’s 
device, but because the receptacles on the right are wider
than those on the left, the height of accumulated particles is
a “histogram” skewed to the left. For a large number of rows,
the heights approach a log-normal distribution. This follows
from the multiplicative version of the central limit theorem,
which proves that the product of many independent, identi-
cally distributed, positive random variables has approxi-
mately a log-normal distribution. Computer implementations
of the models shown in Figure 2 also are available at the Web
site http://stat.ethz.ch/vis/log-normal (Gut et al. 2000).

Figure 2. Physical models demonstrating the genesis of normal and log-normal distributions. Particles fall from a funnel
onto tips of triangles, where they are deviated to the left or to the right with equal probability (0.5) and finally fall into
receptacles. The medians of the distributions remain below the entry points of the particles. If the tip of a triangle is at
distance x from the left edge of the board, triangle tips to the right and to the left below it are placed at x + c and x –  c 
for the normal distribution (panel a), and x · c′ and x / c′ for the log-normal (panel b, patent pending), c and c′ being
constants. The distributions are generated by many small random effects (according to the central limit theorem) that are
additive for the normal distribution and multiplicative for the log-normal. We therefore suggest the alternative name
multiplicative normal distribution for the latter.
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J. C. Kapteyn designed the direct predecessor of the log-
normal machine (Kapteyn 1903, Aitchison and Brown 1957).
For that machine, isosceles triangles were used instead of the
skewed shape described here. Because the triangles’ width is
proportional to their horizontal position, this model also
leads to a log-normal distribution. However, the isosceles
triangles with increasingly wide sides to the right of the en-
try point have a hidden logical disadvantage: The median of
the particle flow shifts to the left. In contrast, there is no such
shift and the median remains below the entry point of the par-
ticles in the log-normal board presented here (which was
designed by author E. L.). Moreover, the isosceles triangles in

the Kapteyn board create additive effects
at each decision point, in contrast to the
multiplicative, log-normal effects ap-
parent in Figure 2b.

Consequently, the log-normal board
presented here is a physical representa-
tion of the multiplicative central limit
theorem in probability theory.

Basic properties of log-
normal distributions
The basic properties of log-normal dis-
tribution were established long ago
(Weber 1834, Fechner 1860, 1897, Gal-
ton 1879, McAlister 1879, Gibrat 1931,
Gaddum 1945), and it is not difficult to
characterize log-normal distributions

mathematically.A random variable X is said to be log-normally
distributed if log(X) is normally distributed (see the box on
the facing page). Only positive values are possible for the
variable, and the distribution is skewed to the left (Figure 3a).

Two parameters are needed to specify a log-normal distri-
bution. Traditionally, the mean µ and the standard deviation
σ (or the variance σ2) of log(X) are used (Figure 3b). How-
ever, there are clear advantages to using “back-transformed”
values (the values are in terms of x, the measured data):
(1) µ∗: = e µ, σ∗: = e σ.

We then use X ∼ Λ(µ∗, σ∗) as a mathematical expression
meaning that X is distributed according to the log-normal law

with median µ∗ and multiplicative stan-
dard deviation σ∗.

The median of this log-normal dis-
tribution is med(X) = µ∗ = e µ, since µ
is the median of log(X). Thus, the prob-
ability that the value of X is greater
than µ∗ is 0.5, as is the probability that
the value is less than µ∗. The parame-
ter σ∗, which we call multiplicative
standard deviation, determines the
shape of the distribution. Figure 4
shows density curves for some selected
values of σ∗. Note that µ∗ is a scale pa-
rameter; hence, if X is expressed in dif-
ferent units (or multiplied by a con-
stant for other reasons), then µ∗
changes accordingly but σ* remains
the same.

Distributions are commonly char-
acterized by their expected value µ and
standard deviation σ. In applications for
which the log-normal distribution ad-
equately describes the data, these pa-
rameters are usually less easy to inter-
pret than the median µ∗ (McAlister
1879) and the shape parameter σ∗. It is
worth noting that σ∗ is related to the

Figure 3. A log-normal distribution with original scale (a) and with logarithmic
scale (b). Areas under the curve, from the median to both sides, correspond to one and
two standard deviation ranges of the normal distribution.
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coefficient of variation by a monotonic, increasing transfor-
mation (see the box below, eq. 2).

For normally distributed data, the interval µ ± σ covers a
probability of 68.3%, while µ ± 2σ covers 95.5% (Table 1).
The corresponding statements for log-normal quantities are

[µ∗/σ∗, µ∗ ⋅ σ∗] = µ∗ x/ σ∗ (contains 68.3%) and
[µ∗/(σ∗)2, µ∗ ⋅ (σ∗)2] = µ∗ x/ (σ∗)2 (contains 95.5%).
This characterization shows that the operations of multi-

plying and dividing, which we denote with the sign ×/
(times/divide), help to determine useful intervals for log-
normal distributions (Figure 3), in the same way that the
operations of adding and subtracting (± , or plus/minus) do
for normal distributions. Table 1 summarizes and compares
some properties of normal and log-normal distributions.

The sum of several independent normal variables is itself
a normal random variable. For quantities with a log-normal
distribution, however, multiplication is the relevant operation
for combining them in most applications; for example, the
product of concentrations determines the speed of a simple

chemical reaction. The product of independent log-normal
quantities also follows a log-normal distribution. The median
of this product is the product of the medians of its factors. The
formula for σ∗ of the product is given in the box below 
(eq. 3).

For a log-normal distribution, the most precise (i.e.,
asymptotically most efficient) method for estimating the pa-
rameters µ* and σ* relies on log transformation. The mean
and empirical standard deviation of the logarithms of the data
are calculated and then back-transformed, as in equation 1.
These estimators are called x̄ * and s*, where x̄ * is the 
geometric mean of the data (McAlister 1879; eq. 4 in the box
below). More robust but less efficient estimates can be obtained
from the median and the quartiles of the data, as described
in the box below.

As noted previously, it is not uncommon for data with a
log-normal distribution to be characterized in the literature
by the arithmetic mean x̄ and the standard deviation s of a
sample, but it is still possible to obtain estimates for µ* and 

Definition and properties of the log-normal distribution

A random variable X is log-normally distributed if log(X) has a normal distribution. Usually, natural logarithms are used, but other bases would lead to the
same family of distributions, with rescaled parameters. The probability density function of such a random variable has the form 

A shift parameter can be included to define a three-parameter family. This may be adequate if the data cannot be smaller than a certain bound different
from zero (cf. Aitchison and Brown 1957, page 14). The mean and variance are exp(µ + σ/2) and (exp(σ2) – 1)exp(2µ+σ2), respectively, and therefore,
the coefficient of variation is 

t

which is a function in σ only.

The product of two independent log-normally distributed random variables has the shape parameter

since the variances at the log-transformed variables add.

Estimation: The asymptotically most efficient (maximum likelihood) estimators are

cv = 

(4)

-

-

The quartiles q1 and q2 lead to a more robust estimate (q1/q2)c for s*, where 1/c = 1.349 = 2 · Φ–1 (0.75), Φ–1 denoting the inverse
standard normal distribution function. If the mean x̄ and the standard deviation s of a sample are available, i.e. the data is summa-
rized in the form x̄ ± s, the parameters µ* and s* can be estimated from them by using
respectively, with , cv = coefficient of variation. Thus, this estimate of s* is determined only by the cv (eq. 2).

and
-

(3)

(2)

.

,



346 BioScience  •  May 2001 / Vol. 51 No. 5

Articles

σ* (see the box on page 345). For example, Stehmann and
De Waard (1996) describe their data as log-normal, with the
arithmetic mean  x̄ and standard deviation s as  4.1 ± 3.7.
Taking the log-normal nature of the distribution into ac-
count, the probability of the corresponding  x̄ ± s interval
(0.4 to 7.8) turns out to be 88.4% instead of 68.3%. More-
over, 65% of the population are below the mean and almost
exclusively within only one standard deviation. In contrast,
the proposed characterization, which uses the geometric
mean x̄ * and the multiplicative standard deviation s*, reads
3.0 x/ 2.2 (1.36 to 6.6). This interval covers approximately
68% of the data and thus is more appropriate than the
other interval for the skewed data.

Comparing log-normal distributions
across the sciences
Examples of log-normal distributions from various branch-
es of science reveal interesting patterns (Table 2). In gener-
al, values of s* vary between 1.1 and 33, with most in the
range of approximately 1.4 to 3. The shapes of such distrib-
utions are apparent by comparison with selected instances
shown in Figure 4.

Geology and mining. In the Earth’s crust, the concen-
tration of elements and their radioactivity usually follow a log-
normal distribution. In geology, values of s* in 27 examples
varied from 1.17 to 5.6 (Razumovsky 1940, Ahrens 1954,
Malanca et al. 1996); nine other examples are given in Table
2. A closer look at extensive data from different reefs (Krige
1966) indicates that values of s* for gold and uranium increase
in concert with the size of the region considered.

Human medicine. A variety of examples from medicine
fit the log-normal distribution. Latent periods (time from in-
fection to first symptoms) of infectious diseases have often

been shown to be log-normally dis-
tributed (Sartwell 1950, 1952, 1966,
Kondo 1977); approximately 70% of
86 examples reviewed by Kondo (1977)
appear to be log-normal. Sartwell
(1950, 1952, 1966) documents 37 cases
fitting the log-normal distribution. A
particularly impressive one is that of
5914 soldiers inoculated on the same
day with the same batch of faulty vac-
cine, 1005 of whom developed serum
hepatitis.

Interestingly, despite considerable
differences in the median  x̄ * of la-
tency periods of various diseases (rang-
ing from 2.3 hours to several months;
Table 2), the majority of s*  values were
close to 1.5. It might be worth trying to
account for the similarities and dis-
similarities in s*. For instance, the small
s* value of 1.24 in the example of the

Scottish soldiers may be due to limited variability within this
rather homogeneous group of people. Survival time after di-
agnosis of four types of cancer is, compared with latent pe-
riods of infectious diseases, much more variable, with s* val-
ues between 2.5 and 3.2 (Boag 1949, Feinleib and McMahon
1960). It would be interesting to see whether x̄ * and s* val-
ues have changed in accord with the changes in diagnosis and
treatment of cancer in the last half century. The age of onset
of Alzheimer’s disease can be characterized with the geo-
metric mean x̄ * of 60 years and s* of 1.16 (Horner 1987).

Environment. The distribution of particles, chemicals,
and organisms in the environment is often log-normal. For
example, the amounts of rain falling from seeded and un-
seeded clouds differed significantly (Biondini 1976), and
again s* values were similar (seeding itself accounts for the
greater variation with seeded clouds). The parameters for
the content of hydroxymethylfurfurol in honey (see Figure 1b)
show that the distribution of the chemical in 1573 samples can
be described adequately with just the two values. Ott (1978)
presented data on the Pollutant Standard Index, a measure of
air quality. Data were collected for eight US cities; the extremes
of x̄ * and s* were found in Los Angeles, Houston, and Seat-
tle, allowing interesting comparisons.

Atmospheric sciences and aerobiology. Another com-
ponent of air quality is its content of microorganisms, which
was—not surprisingly—much higher and less variable in
the air of Marseille than in that of an island (Di Giorgio et al.
1996). The atmosphere is a major part of life support systems,
and many atmospheric physical and chemical properties 
follow a log-normal distribution law. Among other examples
are size distributions of aerosols and clouds and parameters
of turbulent processes. In the context of turbulence, the 

Table 1. A bridge between normal and log-normal distributions.

Normal distribution Log-normal distribution
(Gaussian, or additive (Multiplicative

Property normal, distribution) normal distribution) 

Effects (central limit theorem) Additive Multiplicative
Shape of distribution Symmetrical Skewed
Models

Triangle shape Isosceles Scalene
Effects at each decision point x x ± c x  x/ c′

Characterization
Mean x̄ , Arithmetic ¯̄x *, Geometric
Standard deviation s, Additive s*, Multiplicative
Measure of dispersion cv = s/x̄ s*
Interval of confidence

68.3% x̄ ± s x̄ * x/  s*
95.5% x̄ ± 2s x̄ * x/ (s*)2

99.7% x̄ ± 3s x̄ * x/ (s*)3

Notes: cv = coefficient of variation; x/ = times/divide, corresponding to plus/minus for the 
established sign ±.
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Table 2. Comparing log-normal distributions across the sciences in terms of the original data. x̄ ∗ is an estimator of the
median of the distribution, usually the geometric mean of the observed data, and s* estimates the multiplicative standard
deviation, the shape parameter of the distribution; 68% of the data are within the range of x̄ ∗ x/  s*, and 95% within
x̄ ∗ x/ (s*)2. In general, values of s* and some of x̄ ∗ were obtained by transformation from the parameters given in the
literature (cf. Table 3). The goodness of fit was tested either by the original authors or by us.

Discipline and type 
of measurement Example n x̄ * s* Reference

Geology and mining
Concentration of elements Ga in diabase 56 17 mg · kg–1 1.17 Ahrens 1954

Co in diabase 57 35 mg · kg–1 1.48 Ahrens 1954
Cu 688 0.37% 2.67 Razumovsky 1940
Cr in diabase 53 93 mg · kg–1 5.60 Ahrens 1954
226Ra 52 25.4 Bq · kg–1 1.70 Malanca et al. 1996
Au:  small sections 100 (20 inch-dwt.)a 1.39 Krige 1966

large sections 75,000 n.a. 2.42 Krige 1966
U:   small sections 100 (2.5 inch-lb.)a 1.35 Krige 1966

large sections 75,000 n.a. 2.35 Krige 1966
Human medicine
Latency periods of diseases Chicken pox 127 14 days 1.14 Sartwell 1950

Serum hepatitis 1005 100 days 1.24 Sartwell 1950
Bacterial food poisoning 144 2.3 hours 1.48 Sartwell 1950
Salmonellosis 227 2.4 days 1.47 Sartwell 1950
Poliomyelitis, 8 studies 258 12.6 days 1.50 Sartwell 1952
Amoebic dysentery 215 21.4 days 2.11 Sartwell 1950

Survival times after cancer Mouth and throat cancer 338 9.6 months 2.50 Boag 1949
diagnosis Leukemia myelocytic (female) 128 15.9 months 2.80 Feinleib and McMahon 1960

Leukemia lymphocytic (female) 125 17.2 months 3.21 Feinleib and McMahon 1960
Cervix uteri 939 14.5 months 3.02 Boag 1949

Age of onset of a disease Alzheimer 90 60 years 1.16 Horner 1987

Environment
Rainfall Seeded 26 211,600 m3 4.90 Biondini 1976

Unseeded 25 78,470 m3 4.29 Biondini 1976
HMF in honey Content of hydroxymethylfurfurol 1573 5.56 g kg–1 2.77 Renner 1970
Air pollution (PSI) Los Angeles, CA 364 109.9 PSI 1.50 Ott 1978

Houston, TX 363 49.1 PSI 1.85 Ott 1978
Seattle, WA 357 39.6 PSI 1.58 Ott 1978

Aerobiology
Airborne contamination by Bacteria in Marseilles n.a. 630 cfu m–3 1.96 Di Giorgio et al. 1996

bacteria and fungi Fungi in Marseilles n.a. 65 cfu m–3  2.30 Di Giorgio et al. 1996
Bacteria on Porquerolles Island n.a. 22 cfu m–3 3.17 Di Giorgio et al. 1996
Fungi on Porquerolles Island n.a. 30 cfu m–3 2.57 Di Giorgio et al. 1996

Phytomedicine
Fungicide sensitivity, EC50 Untreated area 100 0.0078 µg · ml–1 a.i.  1.85 Romero and Sutton 1997
Banana leaf spot Treated area 100 0.063 µg · ml–1 a.i. 2.42 Romero and Sutton 1997

After additional treatment 94 0.27 µg · ml–1 a.i. >3.58 Romero and Sutton 1997
Powdery mildew on barley Spain (untreated area) 20 0.0153 µg · ml–1 a.i. 1.29 Limpert and Koller 1990

England (treated area) 21 6.85 µg · ml–1 a.i. 1.68 Limpert and Koller 1990

Plant physiology
Permeability and Citrus aurantium/H2O/Leaf 73 1.58 10–10 m s–1 1.18 Baur 1997

solute mobility (rate of Capsicum annuum/H2O/CM 149 26.9 10–10 m s–1 1.30 Baur 1997
constant desorption) Citrus aurantium/2,4–D/CM 750 7.41 10–7 1 s–1 1.40 Baur 1997

Citrus aurantium/WL110547/CM 46 2.6310–7 1 s–1 1.64 Baur 1997
Citrus aurantium/2,4–D/CM 16 n.a. 1.38 Baur 1997
Citrus aurantium/2,4–D/CM + acc.1 16 n.a. 1.17 Baur 1997
Citrus aurantium/2,4–D/CM 19 n.a. 1.56 Baur 1997
Citrus aurantium/2,4–D/CM + acc.2 19 n.a. 1.03 Baur 1997

Ecology
Species abundance Diatoms (150 species) n.a. 12.1 i/sp 5.68 May 1981

Plants (coverage per species) n.a. ∼0.4% 7.39 Magurran 1988
Fish (87 species) n.a. 2.93% 11.82 Magurran 1988
Birds (142 species) n.a. n.a. 33.15 Preston 1962
Moths in England (223 species) 15,609 17.5 i/sp 8.66 Preston 1948
Moths in Maine (330 species) 56,131 19.5 i/sp 10.67 Preston 1948
Moths in Saskatchewan (277 species) 87,110 n.a. 25.14 Preston 1948

Food technology
Size of unit Crystals in ice cream n.a. 15  µm 1.5 Limpert et al. 2000b

(mean diameter) Oil drops in mayonnaise n.a. 20  µm 2 Limpert et al. 2000b
Pores in cocoa press cake n.a. 10  µm 1.5–2 Limpert et al. 2000b
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size of which is distributed log-normally (Limpert et al.
2000b).

Phytomedicine and microbiology. Examples from
microbiology and phytomedicine include the distribution
of sensitivity to fungicides in populations and distribution of
population size. Romero and Sutton (1997) analyzed the
sensitivity of the banana leaf spot fungus (Mycosphaerella 
fijiensis) to the fungicide propiconazole in samples from 
untreated and treated areas in Costa Rica. The differences in
x̄ * and s* among the areas can be explained by treatment his-
tory. The s* in untreated areas reflects mostly environmen-
tal conditions and stabilizing selection. The increase in s* af-
ter treatment reflects the widened spectrum of sensitivity,
which results from the additional selection caused by use of
the chemical.

Similar results were obtained for the barley mildew
pathogen, Blumeria (Erysiphe) graminis f. sp. hordei, and the
fungicide triadimenol (Limpert and Koller 1990) where,
again, s* was higher in the treated region. Mildew in Spain,
where triadimenol had not been used, represented the orig-
inal sensitivity. In contrast, in England the pathogen was of-
ten treated and was consequently highly resistant, differing by
a resistance factor of close to 450 (x̄ * England / x̄ * Spain).
To obtain the same control of the resistant population, then,
the concentration of the chemical would have to be increased
by this factor.

The abundance of bacteria on plants varies among plant
species, type of bacteria, and environment and has been
found to be log-normally distributed (Hirano et al. 1982,
Loper et al. 1984). In the case of bacterial populations on the
leaves of corn (Zea mays), the median population size 
(x̄ *) increased from July and August to October, but the rel-
ative variability expressed (s*) remained nearly constant (Hi-

rano et al. 1982). Interestingly, whereas s* for the total num-
ber of bacteria varied little (from 1.26 to 2.0), that for the sub-
group of ice nucleation bacteria varied considerably (from 3.75
to 8.04).

Plant physiology. Recently, convincing evidence was pre-
sented from plant physiology indicating that the log-normal
distribution fits well to permeability and to solute mobility in
plant cuticles (Baur 1997). For the number of combinations
of species, plant parts, and chemical compounds studied,
the median s* for water permeability of leaves was 1.18. The
corresponding s* of isolated cuticles, 1.30, appears to be con-
siderably higher, presumably because of the preparation of cu-
ticles. Again, s* was considerably higher for mobility of the
herbicides Dichlorophenoxyacetic acid (2,4-D) and WL110547
(1-(3-fluoromethylphenyl)-5-U-14C-phenoxy-1,2,3,4-tetra-
zole). One explanation for the differences in s* for water and
for the other chemicals may be extrapolated from results
from food technology, where, for transport through filters, s*
is smaller for simple (e.g., spherical) particles than for more
complex particles such as rods (E. J. Windhab [Eidgenös-
sische Technische Hochschule, Zurich, Switzerland], per-
sonal communication, 2000).

Chemicals called accelerators can reduce the variability of
mobility. For the combination of Citrus aurantium cuticles and
2,4-D, diethyladipate (accelerator 1) caused s* to fall from 1.38
to 1.17. For the same combination, tributylphosphate (ac-
celerator 2) caused an even greater decrease, from 1.56 to 1.03.
Statistical reasoning suggests that these data, with s* values of
1.17 and 1.03, are normally distributed (Baur 1997). However,
because the underlying principles of permeability remain
the same, we think these cases represent log-normal distrib-
utions. Thus, considering only statistical reasons may lead to
misclassification, which may handicap further analysis. One 

Table 2. (continued from previous page)

Discipline and type
of measurement Example n x̄ * s* Reference

Linguistics
Length of spoken words in Different words 738 5.05 letters 1.47 Herdan   1958

phone conversation Total occurrence of words 76,054 3.12 letters 1.65 Herdan   1958
Length of sentences G. K. Chesterton 600 23.5 words 1.58 Williams 1940

G. B. Shaw 600 24.5 words 1.95 Williams 1940
Social sciences 
and economics
Age of marriage Women in Denmark, 1970s 30,200 (12.4)a 10.7 years 1.69 Preston  1981
Farm size in England 1939 n.a. 27.2 hectares 2.55 Allanson 1992

and Wales 1989 n.a. 37.7 hectares 2.90 Allanson 1992
Income Households of employees in 1.7x106 sFr. 6,726 1.54 Statistisches Jahrbuch der

Switzerland, 1990 Schweiz 1997

a The shift parameter of a three-parameter log-normal distribution.

Notes: n.a. = not available; PSI = Pollutant Standard Index; acc. = accelerator; i/sp = individuals per species; a.i. = active ingredient; and
cfu = colony forming units.
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question remains: What are the underlying principles of per-
meability that cause log-normal variability?

Ecology. In the majority of plant and animal communities,
the abundance of species follows a (truncated) log-normal dis-
tribution (Sugihara 1980, Magurran 1988). Interestingly, the
range of s* for birds, fish, moths, plants, or diatoms was very
close to that found within one group or another. Based on the
data and conclusions of Preston (1948), we determined the
most typical value of s* to be 11.6 .1

Food technology. Various applications of the log-normal
distribution are related to the characterization of structures
in food technology and food process engineering. Such dis-
perse structures may be the size and frequency of particles,
droplets, and bubbles that are generated in dispersing
processes, or they may be the pores in filtering membranes.
The latter are typically formed by particles that are also log-
normally distributed in diameter. Such particles can also be
generated in dry or wet milling processes, in which log-
normal distribution is a powerful approximation. The ex-
amples of ice cream and mayonnaise given in Table 2 also point
to the presence of log-normal distributions in everyday life.

Linguistics. In linguistics, the number of letters per word
and the number of words per sentence fit the log-normal dis-
tribution. In English telephone conversations, the variability
s* of the length of all words used—as well as of different
words—was similar (Herdan 1958). Likewise, the number of
words per sentence varied little between writers (Williams
1940).

Social sciences and economics. Examples of log-
normal distributions in the social sciences and economics in-
clude age of marriage, farm size, and income. The age of first
marriage in Western civilization follows a three-parameter 
log-normal distribution; the third parameter corresponds to
age at puberty (Preston 1981). For farm size in England and

Wales, both x̄ * and s* increased over 50
years, the former by 38.6% (Allanson 1992).
For income distributions, x̄ * and s* may fa-
cilitate comparisons among societies and
generations (Aitchison and Brown 1957,
Limpert et al. 2000a).

Typical s* values
One question arises from the comparison of
log-normal distributions across the sciences:
To what extent are s* values typical for a cer-
tain attribute? In some cases, values of s* 
appear to be fairly restricted, as is the case for

the range of s* for latent periods of diseases—a fact that
Sartwell recognized (1950, 1952, 1966) and Lawrence reem-
phasized (1988a). Describing patterns of typical skewness at
the established log level, Lawrence (1988a, 1988b) can be re-
garded as the direct predecessor of our comparison of s* val-
ues across the sciences. Aitchison and Brown (1957), using
graphical methods such as quantile–quantile plots and Lorenz
curves, demonstrated that log-normal distributions describ-
ing, for example, national income across countries, or income
for groups of occupations within a country, show typical
shapes.

A restricted range of variation for a specific research ques-
tion makes sense. For infectious diseases of humans, for 
example, the infection processes of the pathogens are similar,
as is the genetic variability of the human population. The same
appears to hold for survival time after diagnosis of cancer, al-
though the value of s* is higher; this can be attributed to the
additional variation caused by cancer recognition and treat-
ment. Other examples with typical ranges of s* come from lin-
guistics. For bacteria on plant surfaces, the range of variation
of total bacteria is smaller than that of a group of bacteria,
which can be expected because of competition. Thus, the
ranges of variation in these cases appear to be typical and
meaningful, a fact that might well stimulate future research.

Future challenges
A number of scientific areas—and everyday life—will present
opportunities for new comparisons and for more far-
reaching analyses of s* values for the applications considered
to date. Moreover, our concept can be extended also to de-
scriptions based on sigmoid curves, such as, for example,
dose–response relationships.

Further comparisons of s* values. Permeability and mo-
bility are important not only for plant physiology (Baur
1997) but also for many other fields such as soil sciences and
human medicine, as well as for some industrial processes.With
the help of x̄ * and s*, the mobility of different chemicals
through a variety of natural membranes could easily be as-
sessed, allowing for comparisons of the membranes with one
another as well as with those for filter actions of soils or with
technical membranes and filters. Such comparisons will un-
doubtedly yield valuable insights.

1Species abundance may be described by a log-normal law (Preston 1948),
usually written in the form S(R) =  S0 · exp(–a2R2), where S0 is the number
of species at the mode of the distribution. The shape parameter a amounts
to approximately 0.2 for all species, which corresponds to s* = 11.6.

Table 3. Established methods for describing log-normal distributions.

Characterization Disadvantages

Graphical methods
Density plots, histograms, box plots Spacey, difficult to describe and compare

Indication of parameters
Logarithm of X, mean, median, Unclear which base of the logarithm should be
standard deviation, variance chosen; parameters are not on the scale of the 

original data and values are difficult to interpret 
and use for mental calculations

Skewness and curtosis of X Difficult to estimate and interpret
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Farther-reaching analyses. An adequate description of
variability is a prerequisite for studying its patterns and esti-
mating variance components. One component that deserves
more attention is the variability arising from unknown rea-
sons and chance, commonly called error variation, or in this
case, s*E . Such variability can be estimated if other conditions
accounting for variability—the environment and genetics, for
example—are kept constant. The field of population genet-
ics and fungicide sensitivity, as well as that of permeability and
mobility, can demonstrate the benefits of analyses of variance.

An important parameter of population genetics is migra-
tion. Migration among regions leads to population mixing,
thus widening the spectrum of fungicide sensitivity encoun-
tered in any one of the regions mentioned in the discussion
of phytomedicine and microbiology. Population mixing
among regions will increase s* but decrease the difference in
x̄ *. Migration of spores appears to be greater, for instance,
in  regions of Costa Rica than in those of Europe (Limpert et
al. 1996, Romero and Sutton 1997, Limpert 1999).

Another important aim of pesticide research is to esti-
mate resistance risk. As a first approximation, resistance risk
is assumed to correlate with s*. However, s* depends on ge-
netic and other causes of variability. Thus, determining its ge-
netic part, s *G  , is a task worth undertaking, because genetic 
variation has a major impact on future evolution (Limpert
1999). Several aspects of various branches of science are
expected to benefit from improved identification of com-
ponents of s*. In the study of plant physiology and perme-
ability noted above (Baur 1997), for example, determining
the effects of accelerators and their share of variability would
be elucidative.

Sigmoid curves based on log-normal distributions.
Dose–response relations are essential for understanding
the control of pests and pathogens (Horsfall  1956). Equally
important are dose–response curves that demonstrate the
effects of other chemicals, such as hormones or minerals.
Typically, such curves are sigmoid and show the cumulative
action of the chemical. If plotted against the logarithm of
the chemical dose, the sigmoid is symmetrical and corre-
sponds to the cumulative curve of the log-normal distrib-
ution at logarithmic scale (Figure 3b). The steepness of
the sigmoid curve is inversely proportional to s*, and the
geometric mean value x̄ * equals the “ED50,” the chemical
dose creating 50% of the maximal effect. Considering the
general importance of chemical sensitivity, a wide field of
further applications opens up in which  progress can be ex-
pected and in which researchers may find the proposed
characterization x̄ * x/s* advantageous.

Normal or log-normal?
Considering the patterns of normal and log-normal distrib-
utions further, as well as the connections and distinctions be-
tween them (Tables 1, 3), is useful for describing and ex-
plaining phenomena relating to frequency distributions in life.
Some important aspects are discussed below.

The range of log-normal variability. How far can s*
values extend beyond the range described, from 1.1 to 33? 
Toward the high end of the scale of possible s* values, we found
one s* larger than 150 for hail energy of clouds (Federer et al.
1986, calculations by W. A. S). Values below 1.2 may even be
common, and therefore of great interest in science. How-
ever, such log-normal distributions are difficult to distin-
guish from normal ones—see Figures 1 and 3—and thus
until now have usually been taken to be normal.

Because of the general preference for the normal distrib-
ution, we were asked to find examples of data that followed
a normal distribution but did not match a log-normal dis-
tribution. Interestingly, original measurements did not yield
any such examples. As noted earlier, even the classic exam-
ple of the height of women (Figure 1a; Snedecor and Cochran
1989) fits both distributions equally well. The distribution can
be characterized with 62.54 inches ± 2.38 and 62.48 inches
×/ 1.039, respectively. The examples that we found of nor-
mally—but not log-normally—distributed data consisted
of differences, sums, means, or other functions of original
measurements. These findings raise questions about the role
of symmetry in quantitative variation in nature.

Why the normal distribution is so popular. Re-
gardless of statistical considerations, there are a number of rea-
sons why the normal distribution is much better known than
the log-normal. A major one appears to be symmetry, one of
the basic principles realized in nature as well as in our culture
and thinking. Thus, probability distributions based on sym-
metry may have more inherent appeal than skewed ones.
Two other reasons relate to simplicity. First, as Aitchison and
Brown (1957, p. 2) stated, “Man has found addition an eas-
ier operation than multiplication, and so it is not surprising
that an additive law of errors was the first to be formulated.”
Second, the established, concise description of a normal sam-
ple—x̄ ± s—is handy, well-known, and sufficient to represent
the underlying distribution, which made it easier, until now,
to handle normal distributions than to work with log-normal
distributions. Another reason relates to the history of the
distributions: The normal distribution has been known and
applied more than twice as long as its log-normal sister 
distribution. Finally, the very notion of “normal” conjures
more positive associations for nonstatisticians than does “log-
normal.” For all of these reasons, the normal or Gaussian
distribution is far more familiar than the log-normal distri-
bution is to most people.

This preference leads to two practical ways to make data
look normal even if they are skewed. First, skewed distribu-
tions produce large values that may appear to be outliers. It
is common practice to reject such observations and conduct
the analysis without them, thereby reducing the skewness
but introducing bias. Second, skewed data are often grouped
together, and their means—which are more normally dis-
tributed—are used for further analyses. Of course, following
that procedure means that important features of the data
may remain undiscovered.
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Why the log-normal distribution is usually the
better model for original data. As discussed above, the
connection between additive effects and the normal distribu-
tion parallels that of multiplicative effects and the log-normal
distribution. Kapteyn (1903) noted long ago that if data from
one-dimensional measurements in nature fit the normal dis-
tribution, two- and three-dimensional results such as surfaces
and volumes cannot be symmetric. A number of effects that
point to the log-normal distribution as an appropriate model
have been described in various papers (e.g., Aitchison and
Brown 1957, Koch 1966, 1969, Crow and Shimizu 1988). In-
terestingly, even in biological systematics, which is the science
of classification, the number of, say, species per family was ex-
pected to fit log-normality (Koch 1966).

The most basic indicator of the importance of the log-
normal distribution may be even more general, however.
Clearly, chemistry and physics are fundamental in life, and the
prevailing operation in the laws of these disciplines is multi-
plication. In chemistry, for instance, the velocity of a simple
reaction depends on the product of the concentrations of the
molecules involved. Equilibrium conditions likewise are gov-
erned by factors that act in a multiplicative way. From this, a
major contrast becomes obvious: The reasons governing fre-
quency distributions in nature usually favor the log-normal,
whereas people are in favor of the normal.

For small coefficients of variation, normal and log-normal
distributions both fit well. For these cases, it is natural to
choose the distribution found appropriate for related cases ex-
hibiting increased variability, which corresponds to the law
governing the reasons of variability. This will most often be
the log-normal.

Conclusion
This article shows, in a nutshell, the fundamental role of the
log-normal distribution and provides insights for gaining a
deeper comprehension of that role. Compared with established
methods for describing log-normal distributions (Table 3), the
proposed characterization by x̄ * and s* offers several ad-
vantages, some of which have been described before (Sartwell
1950, Ahrens 1954, Limpert 1993). Both x̄ * and s* describe
the data directly at their original scale, they are easy to calculate
and imagine, and they even allow mental calculation and es-
timation. The proposed characterization does not appear to
have any major disadvantage.

On the first page of their book, Aitchison and Brown
(1957) stated that, compared with its sister distributions, the
normal and the binomial, the log-normal distribution “has
remained the Cinderella of distributions, the interest of writ-
ers in the learned journals being curiously sporadic and that
of the authors of statistical textbooks but faintly aroused.”This
is indeed true: Despite abundant, increasing evidence that log-
normal distributions are widespread in the physical, biolog-
ical, and social sciences, and in economics, log-normal knowl-
edge has remained dispersed. The question now is this: Can
we begin to bring the wealth of knowledge we have on nor-
mal and log-normal distributions to the public? We feel that

doing so would lead to a general preference for the log-
normal, or multiplicative normal, distribution over the Gauss-
ian distribution when describing original data.
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