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We consider regression in which one predicts a response Y with a set of
predictors X across different experiments or environments. This is a common
setup in many data-driven scientific fields, and we argue that statistical in-
ference can benefit from an analysis that takes into account the distributional
changes across environments. In particular, it is useful to distinguish between
stable and unstable predictors, that is, predictors which have a fixed or a
changing functional dependence on the response, respectively. We introduce
stabilized regression which explicitly enforces stability and thus improves
generalization performance to previously unseen environments. Our work is
motivated by an application in systems biology. Using multiomic data, we
demonstrate how hypothesis generation about gene function can benefit from
stabilized regression. We believe that a similar line of arguments for exploit-
ing heterogeneity in data can be powerful for many other applications as well.
We draw a theoretical connection between multi-environment regression and
causal models which allows to graphically characterize stable vs. unstable
functional dependence on the response. Formally, we introduce the notion
of a stable blanket which is a subset of the predictors that lies between the
direct causal predictors and the Markov blanket. We prove that this set is op-
timal in the sense that a regression based on these predictors minimizes the
mean squared prediction error, given that the resulting regression generalizes
to unseen new environments.

1. Introduction. Statistical models usually describe the observational distribution of a
data generating process. In many applied problems this data generating process may change
over time or across experiments. In such settings it is useful to get a mechanistic understand-
ing of the underlying changes in the system, both to understand which parts of a system
cause certain outcomes and to make reliable predictions under previously unseen conditions.
One approach to rigorously model such changes are causal models (Pearl (2009), Imbens and
Rubin (2015)) which allow for changes in the data generating process via the notion of inter-
ventions. As demonstrated in Section 3, this framework can be related to multi-environment
regression, hence creating a link between the two areas of study: (i) learning a regression,
which performs well under unseen intervention settings, and (ii) selecting variables, based
on their behavior under different observed interventions. Although we use a causal frame-
work for formulation, we do not necessarily address the ambitious task of inferring causality
but rather aim for a notion of stability and invariance. The goal of this paper is to analyze
the connection between (i) and (ii) and use it to develop a methodological framework for
inference.

This study is motivated by an application in systems biology in which one performs an
exploratory analysis to discover the impact of genetic and environmental variants on known
metabolic pathways and phenotypes (Roy et al. (2019), Williams et al. (2020), Čuklina et al.
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(2021)). More specifically, we consider multiomic data from the transcriptome and proteome
of a mouse population of 57 different inbred strains that was split into two groups, fed either
with a low fat diet or a high fat diet. Liver tissue from these cohorts was then collected at
multiple timepoints across their natural lifespans, providing diet as an independent biolog-
ical (environment) variable. Based on these data, the target of interest is to associate gene
expression of mRNAs and proteins in central metabolic pathways and using the independent
biological variables to infer causality. This provides two avenues of hypotheses generation:
(1) identifying pathway-associated genes, which are not in the canonical lists, and (2) deter-
mining which genes are (causally) upstream and driving pathway activity across the popula-
tion as a function of diet.

1.1. Stabilized regression. Consider the following multi-environment regression setting;
let X = (X1, . . . ,Xd) ∈ X be a vector of predictor variables and Y ∈ R a response variable,
both of which are observed in different (perturbation) environments e ∈ E . We assume that in
each environment e ∈ E , the variables (Ye,Xe) have joint distribution Pe. Assume further that
we only observe data from a subset of the environments Eobs ⊆ E . For each observed environ-
ment there are i.i.d. data, yielding n observations across all observed environments. The data
can thus be represented by an (n × d)-matrix X, an (n × 1)-vector Y and an (n × 1)-vector
E indicating which experiment the data points come from. The special case of an under-
lying linear model is shown in Figure 1 (Left: Observed training data; Right: Unobserved
test data) with data generated according to a Gaussian linear model consisting of shift envi-
ronments (Example 2.1). The data have been fitted on the training environment using linear
regression on all variables (red) and on only the direct causal variables of the response (blue),
which might be unknown in practice, of course. Since the underlying data generation process
changes across settings, the regression based on all predictors leads to a biased prediction in
the unobserved test environment, while the regression based only on the direct causal vari-
ables allows to generalize to these settings. At the same time the fit of the model based solely
on the direct causal variables has higher variance on both training and test environments,
compared with the regression based on all predictors. The method we describe in this paper
attempts (without knowing the underlying model) to be able to generalize to unseen settings

FIG. 1. Illustrative example of three linear regression procedures applied to data generated according to Ex-
ample 2.1 with two training and one testing environment. A good fit means that the dots are close to the identity
line (given in black). Linear regression, based on all predictors (red), leads to biased results on the testing envi-
ronment, while a linear regression, based only on direct causal variables of the response (blue), leads to unbiased
estimation but with higher variance in both the testing and training environments. Stabilized regression (green)
aims for the best fit which is also unbiased in the unobserved testing environment.
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without bias, while at the same time minimizing the prediction error. In Figure 1 we show the
result of the proposed method in green.

Assuming an underlying causal structure, there is a key relation between a regression that
is able to generalize and the variables that can be included into that regression. Details on this
connection are given in Section 3. By looking at which sets of predictors lead to models that
generalize and which do not, this gives us insights into the underlying causal mechanism.

Our method was developed as a tool for gene function discovery (e.g., Francesconi et al.
(2008), Dutkowski et al. (2013)), where the goal is often two-fold: (i) Find novel gene rela-
tionships that can be associated to known pathways and (ii) Understand how these genes func-
tion within that pathway. For example, in the mouse data set mentioned above, one would like
to both find genes that are related to a given pathway and understand whether their activity
changes depending on diet or age. Often, such questions can be answered by understanding
whether a functional dependence remains fixed or changes, depending on some exogenous
environment variable. For an illustration of this problem based on the mouse data set, con-
sider Figure 2. There, we consider protein expression levels of 3939 genes (based on n = 315
observations) and try to find functionally related genes to a known cholesterol biosynthe-
sis gene (Hmgcs1). To do this, we set the response Y to be the protein expression levels
of Hmgcs1 and then apply stabilized regression together with stability selection. The exact
procedure is described in Section 6. In Figure 2 we plot the selection probabilities of genes
(large probabilities imply we are certain about the finding) which either have an unstable
or a stable functional relationship with Y across diets on the x-axis and y-axis, respectively.
The genes have been annotated according to their relationship to the cholesterol biosynthesis
pathway from the Reactome Pathway Knowledgebase (Fabregat et al. (2017)) which consists
of 25 known canonical pathway genes of which 16 have been measured (including Hmgcs1).
The result shows that stabilized regression is able to recover many relevant genes and also
allows to separate findings into stable and unstable relationships. Details about the labeled
genes and their relation with the cholesterol pathway are given in Supplementary Material A
(Pfister et al. (2021)).

To achieve these goals, we propose a stabilizing procedure that can be combined with an
arbitrary regression technique for each environment e ∈ Eobs individually. More specifically,
for any subset S ⊆ {1, . . . , d}, let f̂ S be a regression estimate as a function of the predic-
tors XS . We then define the stabilized regression estimator to be a weighted average of the
following form:

(1.1) f̂SR(X) := ∑
S⊆{1,...,d}

ŵS · f̂ S(
XS)

,

where ŵS are normalized weights, that is,
∑

S ŵS = 1. This type of model averaging ap-
pears often in the literature, and we discuss related approaches in Section 1.2. Commonly,
the weights are chosen to optimize the predictive performance of the averaged model (e.g.,
by considering the residual sum of squares or various information criteria). We propose, how-
ever, that large weights should be given to models which are both stable and predictive. Here,
stability means that the models do not vary much between the different environments. We
provide a formal definition in Section 2, but other choices are possible, too, and may be of
particular interest for complex data structures, such as dynamical data (Pfister, Bauer and
Peters (2019)).

1.2. Related work. Predicting in new unobserved perturbed or changed environments
is of huge importance in many applied areas and has been termed transfer learning or do-
main adaption in the machine learning and statistics community. While there are many dif-
ferent types of modeling frameworks for this problem, one well-established idea is to use
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FIG. 2. Stabilized regression (SR) applied to the cholesterol biosynthesis (CB) pathway. The data set consists of
protein expression levels (n = 315) measured for d = 3939 genes, 16 of which are known to belong to CB (red gene
names). We take protein expression levels of one known CB gene (Hmgcs1) as response Y . On the x- and y-axes
we plot subsampling-based selection probabilities for two SR based variable selection procedures—y-axis: stable
genes SBI (Y ) and x-axis: nonstable genes NSBI (Y ). (The precise definitions can be found in Section 3.) Many
significant genes (green area) are canonical CB genes (red label) or part of an adjacent pathway (blue label).
Annotated genes with a semievident relationship have yellow labels and with no clear relation black labels. The
color coding of the nodes (interpolating between red and black) corresponds to the fraction of times the sign of
the regression coefficient was negative/positive (red: negative sign; black: positive sign; grey: never selected).

causal models (Pearl (2009)) and formalize the changes across environments by the notion
of interventions. The key idea behind this approach is that causal models offer an intuitive
way of modeling the conditional distribution of the response Y given its predictors X. More
specifically, a causal model implies invariance of the conditional distribution under certain
conditions which can be used to perform prediction in unseen environments. This is a funda-
mental concept in causality and has been referred to as invariance, autonomy or modularity
(Aldrich (1989), Haavelmo (1944), Hoover (1990), Imbens and Rubin (2015), Wright (1921),
Richardson and Robins (2013)). The invariance principle can be used to learn parts of a causal
model from data and hence give a causal interpretation to some of the variables. This can be
done by turning the invariance assumption around and inferring a causal model by finding
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models which remain invariant. Using this idea to find direct causes of a response has been
done in Peters, Bühlmann and Meinshausen (2016), Pfister, Bühlmann and Peters (2019) and
Heinze-Deml, Peters and Meinshausen (2018). On the other hand, one can also use the in-
variance principle to improve prediction on unseen environments. Several existing methods
learn models that explicitly enforce this assumption in order to generalize to new settings,
as, for example, Schölkopf et al. (2012), Zhang et al. (2013), Rojas-Carulla et al. (2018)
and Heinze-Deml and Meinshausen (2021) have. Others have tried to weaken the invariance
assumption by only penalizing the noninvariance and hence trading-off generalization with
in-sample prediction performance (e.g., Ganin et al. (2016), Pan et al. (2010), Rothenhäusler
et al. (2021)). A general discussion about the relation of invariance and causality is given
by Bühlmann (2020). Our proposed framework incorporates the idea of using invariance in
order to improve generalization while at the same time aiming for a causal interpretation of
the resulting variable selection.

From an algorithmic point of view, our proposed method is related to several averaging
techniques from the literature. Averaging is a common regularization principle throughout
statistics with many different types of applications in regression and variable selection. The
idea of aggregating over several models is, for example, done in the generalized ensem-
ble method due to Perrone and Cooper (1992), which gives explicit equations for optimal
weights in terms of prediction MSE. Similar ideas, also exist in the Bayesian community,
termed Bayesian model averaging (BMA) (Hoeting et al. (1999)). There, models are aggre-
gated by optimizing the posterior approximation, based either on the Bayesian information
criterion (BIC) (Schwarz (1978)) or on the Akaike information criterion (AIC) (leading to the
so-called Akaike weights due to Burnham and Anderson (1998)). Our stabilized regression
estimator in (1.1) averages over all subsets of predictors which is similar to how, for example,
random forests (Breiman (2001)) are constructed. Other related approaches based on resam-
pling subsets of predictors are due to Wang et al. (2011) and Cannings and Samworth (2017).
Our method is, however, unique in combining this type of averaging with environment-wise
stability or invariance.

Finally, the notion of stability has been widely used in several related contexts in statistics.
As pointed out by, for example, Yu (2013) and Yu and Kumbier (2020), reproducible research
relies on the statistical inference being stable across repetitions of the same procedure. This
idea also underlies well-established resampling schemes, such as bagging by Breiman (1996)
and stability selection by Meinshausen and Bühlmann (2010).

1.3. Contributions. We introduce a novel regression framework, based on averaging, that
allows to incorporate environment-wise stability into arbitrary regression procedures. Under
mild model assumptions our resulting regression estimates are shown to generalize to novel
environmental conditions. The usefulness of our procedure is demonstrated for an application
about gene detection from systems biology. For this application, besides using our novel sta-
bilized regression, we propose an additional graphical tool which allows to visualize which
genes are related to a response variable and whether this relationship is stable or unstable
across environments. We believe this can aid practitioners to explore novel biological hy-
potheses. Finally, we introduce a theoretical framework for multi-environment regression
and prove several results which relate it to structural causal models. Based on this correspon-
dence, we introduce the stable blanket SBI (Y ), a subset of the Markov blanket, and discuss
how this might help interpreting the output of different variable selection techniques. Our
procedure is available in the R-package StabilizedRegression on CRAN.

1.4. Outline. In Section 2 we define our formal target of inference and describe the multi-
environment regression setting. Then, in Section 3, we propose a causal model framework and
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prove theoretical results relating the causal model perspective and multi-environment regres-
sion. Moreover, we introduce the concept of a stable blanket and discuss how this allows us
to interpret different variable selection techniques. Most parts of this section can be skipped
by the practical-minded reader. Our proposed algorithm is presented in Section 4 in which we
also give details about practical issues in the implementation. In Section 5 we benchmark our
method with commonly employed techniques based on two simulation experiments. Finally,
in Section 6 we discuss the biological pathway analysis application in detail and explain how
to construct visualizations as in Figure 2.

2. Multi-environment regression. Stabilized regression can be seen as a multi-envi-
ronment regression technique for domain adaptation or transfer learning. The following sum-
marizes the technical details of our multi-environment setup.

SETTING 1 (multi-environment regression). Let X = X 1 ×· · ·×X d be a d-dimensional
product of measurable spaces, let X = (X1, . . . ,Xd) ∈ X be a random vector of predictor
variables, let Y ∈ R be a random response variable and let E tot be a collection of perturba-
tion environments such that, for each environment e ∈ E tot, the variables (Ye,Xe) have joint
distribution Pe. We assume that the distributions Pe are absolutely continuous with respect to
a product measure which factorizes. Assume that we only observe data from a subset of the
environments Eobs ⊆ E tot.

Given this setting, our goal is to make predictions on a potentially unseen environment
e ∈ E tot. For this to be meaningful, some assumption on the type of perturbations in E tot is
required. Motivated by previous work in causality (e.g., Peters, Bühlmann and Meinshausen
(2016)), we assume that that there exists a subset S ⊆ {1, . . . , d} such that, for all environ-
ments e,h ∈ E tot and all x ∈ X , it holds that

(2.1) E
(
Ye | XS

e = xS) = E
(
Yh | XS

h = xS)
.

As we point out in Section 3, this assumption can be related to an underlying causal model.
In that case, condition (2.1) coincides with parts of the causal system being fixed which is a
fundamental concept referred to as invariance, autonomy or modularity.

An illustration of the multi-environment regression setting is given in Figure 3. Neglecting
the environment structure, a classical approach to this problem is to use least squares to
estimate a function f :X →R, which minimizes the (weighted) pooled squared loss

(2.2)
∑

e∈Eobs

ne

n
·E((

Ye − f (Xe)
)2)

,

FIG. 3. Illustration of multi-environment data generation setting. Only some environments are observed, but one
would like to be able to make predictions on any further potentially unobserved environment.
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where ne is the number of observations in environment e. Due to the heterogeneity, the opti-
mizer on each individual environment, which is given by fe(x) = E(Ye | Xe = x), generally
changes across environments. Therefore, it is not necessarily the case that the pooled opti-
mizer generalizes to unseen settings e ∈ E tot \ Eobs. Instead, we propose to explicitly use the
assumed invariance in (2.1) and estimate a function f :X →R, which minimizes the pooled
squared loss in (2.2) subject to the constraint that there exists a subset S ⊆ {1, . . . , d}, such
that, for all e ∈ E tot and all x ∈ X , it holds that

(2.3) f (x) = E
(
Ye | XS

e = xS)
.

Define the constraint set C = {f : X → R | f satisfies (2.3)} which is nonempty by the as-
sumption in (2.1). Therefore, we have the following well-defined optimization problem:

(2.4) minimize
∑

e∈Eobs

ne

n
·E((

Ye − f (Xe)
)2)

subject to f ∈ C.

The standard approach to this problem is to solve the optimization directly by optimizing
over all function f ∈ C. We suggest a different approach. The optimization problem in (2.4)
is equivalent to searching over all subset S ⊆ {1, . . . , d} which satisfy (2.3) and for which
the conditional mean based on the predictors XS has minimal loss in (2.2). The solution to
the optimization is then simply the conditional mean based on XS . Such a set is not neces-
sarily unique which is why our proposed method in Section 4 averages over an estimate for
all these sets. The advantage of this approach is that, in particular in the finite sample case,
the averaging technique leads to improved performance. This can be seen in Sections 5 and
6 in comparison with the instrumental variable procedure that in the linear case directly opti-
mizes (2.4). The following toy example illustrates the difference between the unconstrained
optimization in (2.2) and constrained optimization in (2.4).

EXAMPLE 2.1 (toy model). Consider a variable I which generates the environments
or perturbations. Let the variables (I,X,Y ) satisfy the following structural causal model
(Definition 3.1):

S∗

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

I := εI

X1 := εX1

Y := X1 + εY

X2 := Y + I + εX2

X3 := Y + εX3

with εY , εX1 , εX2 and εX3 independently N (0,1)-distributed and εI = c(e) for a constant
c(e) ∈ R, depending on the environment e ∈ Eobs. Variable I is unobserved and describes the
changes across environments (see Section 3). Consider two cases, where: (i) only the vari-
ables (Y,X1,X2) and (ii) only the variables (Y,X1,X2,X3) are observed. Given case (i) and
assuming a mixture model across the observed environments Eobs (with equal probabilities
across all environments) allows us to compare optimization of (2.2) solved by a pooled least
squares estimator with optimization (2.4) by a simple calculation. The standard ordinary least
squares (OLS) estimator in the population case is given by

βOLS =
(

Var
(
X1)

Cov
(
X1,X2)

Cov
(
X1,X2)

Var
(
X2) )−1 (

Cov
(
X1, Y

)
Cov

(
X2, Y

)) =

⎛⎜⎜⎜⎝
1 + Var(I )

2 + Var(I )

1

2 + Var(I )

⎞⎟⎟⎟⎠ ,

where by slight abuse of notation Var(I ) refers to the variation of c(e) across environments.
Hence, the coefficient of X2 is nonzero in this case implying that predictions can become bad
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on environments where I takes large values. Since the constraint in (2.3) is satisfied for both
S = ∅ and S = {1}, the optimizer of (2.4) is given by f (x) = E(Y | X1 = x1) = x1, and the
optimal regression parameter is given by β∗ = (1,0)�. This regression coefficient is ideal in
the sense that it contains all the information about Y that can be explained independent of
the value of I . If the observed perturbations have a large spread, that is, 1

|Eobs|
∑

e∈Eobs c(e)2

is large, then the OLS regression parameter βOLS approximates the constrained regression
parameter β∗ (see Corollary 3.7). Strong heterogeneity in the data, therefore, improves the
generalization performance of a standard pooled regression.

Consider now case (ii) in which we additionally observe variable X3. While X2 was harm-
ful for the generalization performance, X3 is in general beneficial (see Figure 1). In particular,
the regression parameter for the regression of Y on (X1,X2,X3) with the constraint in (2.3)
has the form β∗ = (β∗

1 ,0, β∗
2 ), where the two parameters are, in general, nonzero and depend

on the underlying system. Similar to case (i), it can be shown that the standard OLS param-
eter again converges to this constrained estimator if the interventions are sufficiently strong.
A formal result describing when the pooled OLS converges to the constrained optimizer in
the case of linear systems is given in Section 3.4. In many applications, however, there might
be insufficient heterogeneity for the OLS, and the difference between solutions to (2.2) and
(2.4) might be substantial. Therefore, whenever the training environments consist of weaker
interventions than the testing environment, one can benefit from explicitly incorporating sta-
bility into the estimation (also shown in Figure 1).

The pooled squared loss (2.2) and the constraint (2.3) combine two aspects: (i) Predictive
performance of the model given by the optimization objective and (ii) stability across pertur-
bations enforced by the constraint in (2.3). These concepts are formalized in the following
definitions.

DEFINITION 2.2 (generalizable sets). A set S ⊆ {1, . . . , d} is called generalizable with
respect to E ⊆ E tot if, for all e,h ∈ E and for all x ∈ X , it holds that

E
(
Ye|XS

e = xS) = E
(
Yh|XS

h = xS)
.

We denote by GE the collection of all generalizable sets.

Any generalizable set will, by definition, have the property that a regression based on
the predictors in that set should have similar predictive performance across all environments
e ∈ E . In practice, it is, however, also important that the predictive performance is not only
equal across different environments but is equally good in all environments.

DEFINITION 2.3 (generalizable and regression optimal sets). A set S ⊆ {1, . . . , d} is
called generalizable and regression optimal with respect to E ⊆ E tot if it is generalizable in
the sense that S ∈ GE and if it satisfies

S ∈ arg min
S̄∈GE

∑
e∈E

ne

n
·E[(

Ye −E
(
Ye|XS̄

e

))2]
.

The collection of all generalizable and regression optimal sets (with respect to E) is denoted
by OE .

In general, the sizes of GE and OE decrease when more environments are added to E . In
Section 3.3 we discuss when the observed environments Eobs are sufficient for generalization
to all potential environments E tot, that is, when GEobs = GE tot and OEobs = OE tot hold. In
Section 4 we will introduce an algorithm that approximates a solution to the constrained
optimization (2.4) by explicitly estimating the generalizable and regression optimal sets.
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FIG. 4. Graphical illustration of variable selection. The goal is to find predictors X = (X1, . . . ,X9) that are
functionally related to the response Y . Here, variables I = (I1, I2) are unobserved intervention variables. The
colored areas represent different targets of inference: Markov blanket, stable blanket and parents (causal vari-
ables). If the goal is to get as close as possible to the parents, the stable blanket can improve on the Markov
blanket if there are sufficiently many informative interventions.

3. Stable blankets. As in the previous sections, assume Y is a response variable and
X is a set of predictors. In this section we want to consider the problem of finding a subset
of predictors that are functionally related to Y . An example is given by the causal graphical
model illustrated in Figure 4 (see Section 3.1 for details). A simple but common approach
is to select predictors by pairwise association with Y . Often this selects many predictors,
for example, in Figure 4 it might result in all of the predictors being selected. A fine-tuned
approach is to predict Y from X and select the predictors that were most important in the
prediction model. In the notation of Section 2, such a set of predictors would be regression
optimal. Given further assumptions, it can be shown that, in some cases, such approaches
actually recover the smallest set of informative predictors which is known as the Markov
blanket of Y in the graphical model literature and denoted by MB(Y ). As shown in Figure 4,
MB(Y ) consists of variables that are functionally closer to Y .

There is an important causal distinction between different predictors in MB(Y ): Interven-
tions that do not directly target Y will never affect the functional relation between Y and the
causal parents of Y (denoted by PA(Y )), but they can change the relation of Y with other vari-
ables in MB(Y ) (e.g., X5 in Figure 4). This motivates the idea of additionally distinguishing
between stable and nonstable predictors. In analogy to the Markov blanket, this leads to the
definition of the stable blanket of Y , which we denote by SBI (Y ) and which is equal to the
smallest set of predictors that contains all information about Y that is unaffected by interven-
tions. In Section 3.3 we will discuss how SBI (Y ) and MB(Y ) are related to generalizable
and regression optimal sets. A useful property of the stable blanket is that it always satisfies
the hierarchy PA(Y ) ⊆ SBI (Y ) ⊆ MB(Y ). We can, therefore, use SBI (Y ) as a proxy for up-
stream predictors of Y . Similarly, the nonstable blanket NSBI (Y ) := MB(Y ) \ SBI (Y ) can
be used as a proxy for down-stream predictors of Y .

3.1. A causal model perspective. In this section we additionally assume an underlying
causal model which allow us to specify graphical conditions for describing generalizable
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sets. This characterization is not important from a methodological viewpoint but helps from
a causal modeling perspective and can give some useful insights for interpreting the results
of variable selection. It uses some terminology and concepts from the causal literature. The
practically-oriented reader may skip this subsection.

We choose to work with structural causal models (SCMs) (e.g., Pearl (2009), Peters, Janz-
ing and Schölkopf (2017)), sometimes also referred to as structural equation models (SEMs).

DEFINITION 3.1 (structural causal model). A structural causal model (SCM), over ran-
dom variables W = (W 1, . . .Wp), is a collection of p assignments,

(3.1) S

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W 1 := f 1(

WPA(W 1), ε1)
...

Wp := f p(
WPA(Wd), εp)

,

where ε1, . . . , εp are independent noise variables. For all k ∈ {1, . . . , p}, PA(Wk) ⊆
{1, . . . , p} \ {k} is called the set of direct (causal) parents of Wk . Moreover, the assignments
in (3.1) are assumed to be uniquely solvable, which is always true if the induced graph is
acyclic, for example. An SCM induces a distribution over the variables W as well as a graph
over the vertices (W 1, . . . ,Wp), denoted by G(S), by adding directed edges from PA(Wk)

to Wk for all k ∈ {1, . . . , p}.

For any SCM S over W = (W 1, . . . ,Wp), an intervention on a variable Wj corresponds
to a new SCM S̃ for which only the structural assignment of Wj has been replaced. We only
consider interventions for which the new SCM remains solvable. When talking about graphs,
we use the notion of d-separation (e.g., Pearl (2009)), which we denote by ⊥⊥G to distinguish
it from conditional independence. We summarize the causal model setting below.

SETTING 2 (underlying causal model). Let X ∈ X = X 1 × · · · × X d be predictor vari-
ables, Y ∈ R a response variable and I = (I 1, . . . , Im) ∈ I = I1 × · · · × Im intervention
variables which are assumed to be unobserved and are used to formalize interventions. As-
sume there exists a fixed SCM S∗ over (I,X,Y ) such that G(S∗) is a directed acyclic graph
(DAG) and for which the intervention variables I are source nodes and do not appear in the
structural assignment of Y . An intervention environment e corresponds to an intervention
SCM Se over (Ie,Xe,Ye) in which only the equations with Ie on the right-hand side change
and the graph structure stays fixed (i.e., G(Se) = G(S∗)). Let E tot be the set of all such in-
tervention environments, and let Eobs ⊆ E tot be a finite set of observed environments. Lastly,
assume the distribution of (Ie,Xe,Ye) is absolutely continuous with respect to a product
measure that factorizes.

The intervention variables I are introduced as auxiliary variables to specify the interven-
tion locations, similar to augmented DAGs or influence diagrams in the literature (e.g., Dawid
(2002)). For the sake of simplicity, we assume the existence of an entire joint distribution of
(I,X,Y ). This allows interpreting interventions as conditioning statements on the interven-
tion variables I , since they are source nodes. In general, the intervention variables I , however,
do not need to be stochastic and can also be modeled as deterministic using a more compli-
cated notion of conditional independence as in Constantinou and Dawid (2017).

Based on this setting, we can define intervention stable sets. Intuitively, a set S is called
intervention stable if the corresponding predictors explain all of the intervention variability
in the response variable.
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DEFINITION 3.2 (intervention stable sets). Given Setting 2, a set S ⊆ {1, . . . , d} is called
intervention stable if, for all � ∈ {1, . . . ,m}, the d-separation I � ⊥⊥G Y | XS holds in G(S∗).

As an example, consider the predictor set S = {1,2,9} in Figure 4. The variable X9 opens
a path from I 2 to Y which means the set is not intervention stable. In contrast, the parent set
S = {1,2} is intervention stable. More generally, since the graph G(S∗) remains fixed across
interventions, it immediately follows that PA(Y ) is always an intervention stable set. Together
with the following proposition (which proves that any intervention stable set is generalizable),
this implies that the invariance assumption in (2.1) is satisfied.

PROPOSITION 3.3 (intervention stable sets are generalizable). Assume Setting 2; then,
for all intervention stable sets S ⊆ {1, . . . , d} it holds that S ∈ GE tot .

A proof is given in Supplementary Material A (Pfister et al. (2021)). Based on this propo-
sition, it is possible to find generalizable sets using only the graphical structure. However,
not all generalizable sets are intervention stable. More details on this relation are given in
Section 3.3.

In graphical models the Markov blanket of Y , denoted by MB(Y ), is defined as the smallest
set S ⊆ {1, . . . , d} that satisfies

(3.2) ∀j ∈ {1, . . . , d} \ S : Xj ⊥⊥G Y | XS.

The Markov blanket specifies the smallest set of variables that separates the response Y from
all other variables and hence allows a precise notion of predictiveness. The following defini-
tion combines this notion with intervention stability.1

DEFINITION 3.4 (stable blanket). Assume Setting 2, and define the following set of vari-
ables:

N int := {1, . . . , d} \ {
j ∈ {1, . . . , d} | ∃k ∈ CHint(Y ) : j ∈ DE

(
Xk)},

where CHint(Y ) are all children of Y that are directly intervened on and DE(Xk) are all de-
scendants of Xk , including Xk itself. Then, the stable blanket, denoted by SBI (Y ), is defined
as the smallest set S ⊆ N int that satisfies

(3.3) ∀j ∈ N int \ S : Xj ⊥⊥G Y | XS.

In words, the set N int consists of all variables that are neither children of Y , which have
been intervened, nor descendants of such children. In the example in Figure 4, it consists of
all variables, except X5 and X9, that is, N int = {1,2,3,4,6,7,8}. It is helpful to compare
(3.2) and (3.3) to see the parallels and differences between the Markov blanket and the stable
blanket. A further characterization of the stable blanket is given in the following theorem
which also proves that it is generalizable and regression optimal.

THEOREM 3.5 (stable blankets are generalizable and regression optimal). Assume Set-
ting 2; then, the stable blanket consists of all children of Y that are not in N int, the parents of
such children and the parents of Y . Furthermore, it holds that SBI (Y ) ∈ OE tot .

A proof is given in Supplementary Material A (Pfister et al. (2021)). It is illustrative to
think about the set SBI (Y ) in relation to the parent set PA(Y ) and the Markov blanket MB(Y ).
By Theorem 3.5, it will lie somewhere between these two sets. The exact size depends on the
intervention variables with the following special cases: (i) if there are no interventions, it
holds that SBI (Y ) = MB(Y ); (ii) if there are sufficiently many interventions, for example, on
any node other than Y , it holds that SBI (Y ) = PA(Y ).

1The union of intervention stable sets is, itself, not necessarily intervention stable anymore.
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3.2. Stable blanket as a proxy for causality. As alluded to in the previous section, the sta-
ble blanket SBI (Y ) can be seen as a proxy for the causal parents. In the most basic case of an
SCM with an underlying directed acyclic structure, the Markov blanket can be decomposed
into parents, children and parents of children, that is,

MB(Y ) = PA(Y ) ∪ CH(Y ) ∪ {
j ∈ {1, . . . , d} | ∃k ∈ CH(Y ) : j ∈ PA

(
Xk)}.

As long as the intervention variables do not directly affect the response Y , this implies that the
difference between the Markov blanket and the stable blanket consists only of variables that
are children or parents of children of the response. We denote this difference as the nonstable
blanket

NSBI (Y ) := MB(Y ) \ SBI (Y ).

Given the above decomposition, this implies that PA(Y ) ⊆ SBI (Y ) and NSBI (Y ) ⊆ CH(Y )∪
{j ∈ {1, . . . , d} | ∃k ∈ CH(Y ) : j ∈ PA(Xk)}. Therefore, depending on whether we are either
interested in the parents or in down-stream variables (or children) of Y , the sets SBI (Y ) and
NSBI (Y ) can be used as proxies.

3.3. Identifiability of generalizable sets. In Section 2 we introduced the collection of
generalizable and regression optimal predictor sets OE tot which lead to regressions that be-
have well on all potential environments E tot. We saw that if one assumes an underlying causal
model, as in Section 3, it is possible to compute the stable blanket SBI (Y ). This shows, since
SBI (Y ) ∈ OE tot , that it is possible to construct a generalizable and regression optimal set
whenever the underlying causal structure is known. In practice, we usually do not have access
to the causal structure and only observe a (small) subset Eobs of all potential environments
E tot. Intuitively, the best one can hope for in such cases is to find sets in OEobs . Therefore,
the question arises whether and when the sets in OEobs also generalize to any further envi-
ronments not contained in Eobs. The answer depends on the assumptions one is willing to
make on the data generating process and, in particular, on the types of environments that are
observed and unobserved. In this section we discuss additional conditions to Setting 2, that
allow generalization from Eobs to E tot.

Given Setting 2, we are interested in what additional conditions are sufficient to be able
to infer the stable blanket and hence a generalizable and regression optimal set from data. In
order to compute SBI (Y ), we need to be able to determine whether a given set is intervention
stable based on data. We require two types of assumptions.

First, the faithfulness assumption (Pearl (2009)) ensures that any conditional independence
in the data generating random variables corresponds to a d-separation in the graph. Given
faithfulness and a sufficiently large sample size, it is possible, in most cases, to consistently
recover the Markov blanket using, for example, an appropriate feature selection algorithm
(Pellet and Elisseeff (2008)). This, in particular, does not require any type of heterogeneity
and can be based purely on observational data.

Second, to check whether a subset S ⊆ {1, . . . , d} is intervention stable requires to detect
all conditional dependencies between the intervention variables and the response given the
predictors in S. Since only the environments are observed and not the intervention variables,
we require that

∀e,h ∈ Eobs : E(
Ye | XS

e = xS) = E
(
Yh | XS

h = xS)
⇒ ∀� ∈ {1, . . . ,m} : I � ⊥⊥ Y |XS.

In other words, by contraposition we need that any conditional dependence between the inter-
vention variables and the response leads to a shift in conditional mean across environments.



1232 N. PFISTER ET AL.

3.4. Understanding stable blankets in linear models. To get a better understanding of
the relation between stable blankets and standard regression techniques, we consider linear
models and analyze the behavior of the pooled ordinary least squares (OLS) estimator in our
proposed multi-environment regression setting. We will show that the OLS only sets vari-
ables in the nonstable blanket to zero if the intervention strength goes to infinity. This means
that, whenever the intervention strength is not sufficiently strong, OLS does not necessarily
perform well on unobserved environments with stronger interventions.

For our results it is enough to consider population quantities since the ordinary least
squares estimator is consistent. The following lemma gives an explicit expression of the pop-
ulation OLS applied to a linear SCM in terms of the (exogenous) noise variables and the
coefficient matrix. It allows us to assess the behavior of the OLS under interventions.

LEMMA 3.6 (OLS in linear SCMs). Assume the variables (X,Y ) ∈R
d+1 satisfy a linear

directed acyclic SCM, that is, there exists B ∈ R
(d+1)×(d+1) and independent noise variable

ε = (ε0, . . . εd) ∈ R
d+1 such that(

Y

X

)
:= B ·

(
Y

X

)
+ ε with B =

(
0 β�

PA
βCH BX

)
,

where BX ∈ R
d×d and βCH, βPA ∈ R

d×1. The parents and children of Y are given by the
nonzero coefficients βPA and βCH, respectively. Then, the population ordinary least squares
βOLS, when regressing Y on X, is given by

βOLS = βPA + (
(Id − BX)� − βPAβ�

CH
)
D−1βCH

(
1 − σ 2

0 βT
CHD−1βCH

1 + σ 2
0 βT

CHD−1βCH

)
σ 2

0 ,

where D = Cov(ε1, . . . , εd) and σ 2
0 = Var(ε0).

A proof is given in Supplementary Material A (Pfister et al. (2021)). The result implies
that the population OLS can be decomposed into the sum of the true causal parameter βPA
plus a correction term. It can be shown that this correction is zero for coordinates j /∈ MB(Y )

(see proof of Corollary 3.7) which is a well-known property of ordinary least squares. More-
over, we can explicitly analyze the behavior of the OLS in the multi-environment regression
setting. In particular, it can be shown that βOLS,j converges to zero for variables j /∈ SBI (Y ),
as the variance of the interventions across environments increases. The exact result is given
in the following corollary.

COROLLARY 3.7 (OLS under strong interventions). Let (In̄,Xn̄, Yn̄) be a sequence of
variables satisfying Setting 2 for the same directed acyclic linear SCM S∗. Additionally,
assume that each of the variables In̄ has exactly one child, and the sum of the coefficients
along directed paths starting at variables In̄ are always nonvanishing. Moreover, for all n̄ ∈
N, there are two observed environments Eobs

n̄ = {e+
n̄ , e−

n̄ }, where the interventions e+
n̄ and e−

n̄

satisfy for all � ∈ {1, . . . ,m} that

I �
n̄ = c+

�,n̄ in Se+
n̄

and I �
n̄ = c−

�,n̄ in Se−
n̄
,

where c+
�,n̄, c−

�,n̄ are independent random variables with mean zero and variance σ 2
n̄ such that

limn̄→∞ σn̄ = ∞. Then, the pooled OLS estimator βOLS
n̄ when regressing Yn̄ on Xn̄ (i.e., the

minimizer of (2.2) over all linear functions) satisfies, for all j ∈ {1, . . . , d} \ SBI (Y ),

lim
n̄→∞β

OLS,j
n̄ = 0.
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A proof is given in Supplementary Material A (Pfister et al. (2021)). We use n̄ to make clear
that this is a population result in which the limit is taken in terms of intervention strength
and not in terms of sample size. Corollary 3.7 provides results in an asymptotic regime in
which the interventions are sufficiently strong. In the numerical simulations in Section 5, we
will see that, whenever the intervention strength is not sufficiently strong, the OLS can be
outperformed.

4. Proposed method. Our goal is to fit a regression function which approximates a so-
lution to (2.4). Instead of just finding a single set S for which the conditional mean based on
XS solves (2.4), we propose to approximate this function with a weighted average. The idea
is that verifying the invariance constraint in (2.3) involves uncertainty which can be reduced
by averaging over many invariant sets instead of deciding on a single set. For any subset
S ⊆ {1, . . . , d}, let f̂ S : X |S| → R be a regression estimate which minimizes (2.2) restricted
to the predictors in S. Recall that the stabilized regression estimator is defined as the weighted
average

(4.1) f̂SR(X) := ∑
S⊆{1,...,d}

ŵS · f̂ S(
XS)

,

where the weights are assumed to satisfy
∑

S ŵS = 1. For this estimator to approximate a
solution of (2.4), we select large weights for sets of predictors which are both generalizable
and regression optimal.

4.1. Estimating generalizable and regression optimal sets. Let Ô be a subset of the
power set of {1, . . . , d} that estimates the collection of generalizable and regression optimal
sets with respect to Eobs. Then, we propose to construct the weights as follows:

(4.2) ŵS :=
{

1/|Ô| if S ∈ Ô,

0 otherwise.

The set Ô can be estimated by a score-based approach as follows. For each set S ⊆ {1, . . . , d}
compute two scores: (i) A stability score, denoted by sstab(S), which measures how well the
regression based on predictors from S satisfies the invariance (2.1) and (ii) a prediction score,
denoted by spred(S), which measures how predictive the regression based on predictors from
S is. Based on these scores, estimate the collection of generalizable sets as

Ĝ := {
S ⊆ {1, . . . , d} | sstab(S) ≥ cstab

}
and the collection of generalizable and regression optimal sets as

Ô := {
S ∈ Ĝ | spred(S) ≥ cpred

}
.

The cutoff parameters cstab and cpred are tuning parameters. Depending on the data, the re-
gression technique and potential domain knowledge, different types of scores and cutoffs can
be selected.

Below, we discuss explicit options for constructing stability and prediction scores. We
focus on settings where the response can be expressed as a function of the predictors with
additive noise, that is, Y = f (X) + ε. For the stability score we propose an approximate
hypothesis test for the null hypothesis S ∈GEobs (see Section 4.1.1). For the prediction score,
a bootstrap approach, based on mean squared errors, can be employed (see Section 4.1.2).
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4.1.1. Stability scores. We propose to construct stability scores for each set S ⊆
{1, . . . , d} by a test for the null hypothesis S ∈ GEobs , that is, whether S satisfies the in-
variance (2.1). Once such a test has been selected, we set, for any set S ⊆ {1, . . . , d}, the
stability score sstab(S) to be the p-value of this test. An intuitive parameterization is to set the
cutoff cstab to be the type-1 error control for the hypothesis test which controls the trade-off of
how stringently we want to enforce stability. There are many ways in which a hypothesis test
for this problem can be constructed. Here, we discuss some potential starting points for the
general case and conclude with two well-known tests for Gaussian linear models. Assume we
fit a regression function f̂ S

e on each observed environment e ∈ Eobs individually. Given the
null hypothesis S ∈ GEobs , all of these regression functions should be approximately equal up
to the estimation error, that is, f̂ S

e ≈ f̂ S
h . As a consequence, the residuals R̂S

e = Ye − f̂ S
e (XS

e )

on each environment should also have approximately the same distribution, that is, R̂S
e

d≈ R̂S
h .

One can, therefore, construct a hypothesis test by explicitly quantifying the estimation error
in either of these approximations. However, in order to be able to do this, one needs to make
some assumptions on the data-generating process. In the case of linear regression, when the
data generating process is a linear model with Gaussian noise (Y = βX + ε), we can explic-
itly test for equal regression parameters β̂e and β̂h using a Chow test (Chow (1960)). A slight
disadvantage of this test is that it can only test equivalence between two environments at
a time. This means one needs to correct for multiple testing whenever there are more than
two environments. A second option in the Gaussian linear case is to use a resampling based
test, as suggested by Shah and Bühlmann (2018). One can show that it is possible to exactly
resample from the distribution of the scaled residuals Re/‖Re‖2. This allows to construct a
test for an arbitrary test statistic, based on Re/‖Re‖2 (e.g., the sum of differences in mean
across environments).

4.1.2. Prediction scores. For the prediction score we propose to either use the negative
mean squared prediction error or the negative minimal environment-wise mean squared pre-
diction error. We use negative values to ensure that large values imply predictive and small
values nonpredictive. To make the cutoff interpretable and easier to select, one can use the
following bootstrap procedure. For every set S ⊆ {1, . . . , d}, let spred(S) be the chosen pre-
diction score. Construct B bootstrap samples, (X∗

1,Y∗
1), . . . , (X

∗
B,Y∗

B), and define for every
S ⊆ {1, . . . , d} the bootstrap distribution function of the prediction score for all t ∈ R as

F ∗
spred(S)(t) :=

B∑
i=1

1{spred(S)(X∗
i ,Y

∗
i )≤t}.

Moreover, let Q ∈ Ĝ be the set of predictors with maximal prediction score, that is,
Q := arg maxS∈Ĝ spred(S)(X,Y). Then, we choose the cutoff parameter to be cpred =
(F ∗

spred(Q))
−1(αpred), where αpred ∈ (0,1) specifies how strongly to focus on the most pre-

dictive set.

4.2. Variable importance. Based on the stabilized regression estimator, it is possible to
define several types of variable importance measures that can then be used to recover either
the Markov blanket, the stable blanket or the nonstable blanket.

Assume we have computed the stabilized regression estimator given in (1.1). Then, for
each variable j ∈ {1, . . . , d}, define the weight variable importance as follows:

v
weight
j := ∑

S⊆{1,...,d}
ŵS · 1{j∈S}.
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This means the importance of a variable depends on how often it appears with a positive
weight. In the case of linear regression, a similar importance measure can be defined. To
that end, let the individual regression functions be given by f̂S : x �→ β̂�

S x, where β̂S is the
(scaled) ordinary least squares estimator based on the predictor set S with zeros at all other
coordinates. Then, define the coefficient variable importance as

vcoef
j := ∑

S⊆{1,...,d}
ŵS · ∣∣β̂j

S

∣∣.
A third option that can be used for a general regression procedure is a permutation based
approached. Let X∗,j

1 , . . . ,X∗,j
B be permuted versions of the data in which the j th coordinate

is permuted while the remaining coordinates are fixed. Then, the permutation importance is
defined as

v
perm
j := 1

B

B∑
i=1

(
RSS∗,j

i − RSS

RSS

)
,

where RSS and RSS∗,j
i are the residual sum of squares of the estimator f̂SR, based on the

training data X and the permuted data X∗,j
i , respectively.

Since stabilized regression averages over the sets that are estimated to be generalizable
and regression optimal, using any of these variable importance measures should rank vari-
ables higher if they indeed are part of a generalizable and regression optimal set. In terms
of Section 3, this means that variables in the stable blanket are ranked higher. Similarly, if
the stability test cutoff is removed or, equivalently, set to −∞ the variable importance should
rank variables higher that are in the Markov blanket. A sensible ranking for whether a variable
belongs to the nonstable blanket is thus given by

vSRdiff
j := v

SRpred
j − vSR

j ,

where vSR
j and v

SRpred
j are one of the variable rankings above, based on stabilized regression

with and without stability cutoff, respectively.

4.3. Implementation. Given a regression procedure, stabilized regression is straightfor-
ward to implement and pseudo-code is given in Algorithm 1. The framework is modular and
most components, such as stability score, prediction score, variable screening and subsam-
pling of subsets can all be adjusted according to the application at hand.

In Algorithm 1 we added a variable screening step in line 1, since exhaustive subset search
becomes infeasible as soon as more than about 15 variables are involved. Instead, we propose
to combine a variable screening with subsequent subsampling of predictor sets. Any type of
variable screening can be employed, as long as it focuses on selecting predictive variables
and removing irrelevant variables. In the linear case, two reasonable approaches would be
either plain correlation screening (Fan and Lv (2008)) or an �1-penalty type screening as, for
example, used in the Lasso (Tibshirani (1996)). How many variables to keep after screening
depends on the application. In general, our empirical analysis suggested to screen as much as
possible without removing any potentially relevant predictors. To make computations feasible
after screening, one can additionally subsample subsets randomly. There are several ideas
that appear to work well in practice. First, only sample random sets up to a certain size. If
one has an idea about how many variables are required to get a stable set (this can often be
checked empirically), it empirically seemed to help to sample more sets with this size and less
sets with different sizes. Second, the number of subsampled sets should depend both on the
expected number of stable and predictive sets and on the number of variables after screening.
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Algorithm 1: StabilizedRegression
input : predictor matrix X

response matrix Y
environments Eobs

parameters αpred, αstab ∈ (0,1)

1 perform variable screening (optional)
2 select collection of sets {S1, . . . , SM} (all or subsampled)
3 for k ∈ {1, . . . ,M} do
4 fit regression function f̂ Sk

5 compute stability score sstab(S)

6 compute prediction score spred(S)

7 end
8 Ĝ← {S ∈ {S1, . . . , SM} | sstab(S) ≥ αstab}
9 cpred ← (F ∗

MSEQ
)−1(1 − αpred)

10 Ô← {S ∈ Ĝ | spred(S) ≥ cpred}
11 compute weights ŵS according to (4.2)

output: weights ŵS

regressors f̂ S

In our simulations it was often sufficient to subsample about 1000 sets, but, generally, the
number should be selected in a data driven fashion, similar to how the number of trees in a
random forest (Breiman (2001)) is selected.

In Supplementary Material A (Pfister et al. (2021)), we give a proposal on how to choose
default parameters.

5. Numerical simulations. In this section we assess the empirical performance of stabi-
lized regression. We restrict ourselves to the linear model setting, as this is the setting of our
biological application. First, in Section 5.1 we consider low-dimensional linear regression
and in Section 5.2 high-dimensional sparse linear regression. In both cases we assess how
well stabilized regression recovers the sets SBI (Y ) and NSBI (Y ) as well as the predictive
performance on unseen new environments.

Stabilized regression. Throughout this section we use the implementation of stabilized re-
gression given in Algorithm 1. We consider two versions, both using ordinary least squares
as regression but based on different choices of weights ŵS . First, we use a vanilla version
denoted by SR. It uses the mean squared error as prediction score and the p-value of a re-
sampling test using the differences of environmentwise means as test statistic as stability
score (see Section 4.1.1). The tuning parameters αpred and αstab are both selected to be 0.01.
Second, we use a predictive version, denoted by SRpred. It uses the lowest environmentwise
mean squared error as prediction score (again, with αpred = 0.01) and does not include any
type of stability score. For both methods we rank the variables according to the score vcoef

j ,
defined in Section 4.2. By construction, we expect SR to rank variables in the stable blanket
highest, while SRpred should rank variables in the Markov blanket highest (as long as they
are predictive in at least one environment). We combine both procedures to get a further vari-
able ranking, denoted by SRdiff which ranks variables according to vSRdiff

j = v
SRpred
j − vSR

j ,
defined in Section 4.2. We expect that this will recover variables in the nonstable blanket.
For the high-dimensional example we combine both stabilized regression procedures with �1

prescreening and screen to 10 variables.
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Competing methods. As our simulations are all focused on the linear case, we consider the
following linear methods: (i) Ordinary linear least squares. This method can only be applied
in the low-dimensional setting and will be denoted by OLS. (ii) �1-penalized linear regres-
sion, also known as Lasso (Tibshirani (1996)), is a regularized version of linear regression
that is often employed to high-dimensional problems. We select the penalty parameter, based
on cross-validation, and denote the method by Lasso. (iii) Anchor regression (Rothenhäusler
et al. (2021)) which explicitly incorporates heterogeneity. We consider two versions, one for
the low-dimensional case, based on OLS, and one for the high-dimensional case, based on
Lasso, denoted by AR and AR (Lasso), respectively. The tuning parameter for both is based
on an environment-wise cross-validation. (iv) Instrumental variables regression, which al-
lows to guard against arbitrary shift strengths. We compute it via the anchor regression esti-
mate, based on a penalty parameter of γ = 1000. As with anchor regression, there will be two
versions, based either on OLS or Lasso, denoted by IV and IV (Lasso), respectively. For each
method we get a variable importance measure by taking the scaled regression parameter. All
methods, except IV, should recover the Markov blanket. On the other hand, in our simulation
settings IV should recover the stable blanket (see Section 3.3), given a sufficient sample size
and strong enough interventions.

5.1. Low-dimensional linear regression. In our first numerical experiment we consider a
standard low-dimensional linear SCM. We want to assess both the predictive generalization
performance as well as the variable selection. To this end, we simulate 1000 data sets, ac-
cording to Simulation 1, and apply stabilized regression and all competing methods to each.

SIMULATION 1 (Low-dimensional linear regression). Randomly sample a DAG with
d = 11 variables as follows: (i) Sample a causal ordering by randomly permuting the vari-
ables. (ii) Iterate over the variable and sample for each variable at most four parents from
all variables with higher causal ordering. Next, select a random node to be the response Y ,
extend the DAG by randomly sampling four variables from the remaining d −1 variables and
add a parent intervention node I to each of them. Denote the adjacency matrix of the result-
ing DAG by B , that is, Bi,j �= 0 if and only if there is an edge from node i to node j . For
each nonzero entry in B , sample an edge weight uniformly from (−1.5,−0.5) ∪ (0.5,1.5).
Based on this DAG, generate data from different environments consisting of random mean
shifts in the noise of the intervention variables. The random mean shifts are sampled differ-
ently, depending on whether the environment is used for training or for testing. Specifically,
for training the mean shift is sampled uniformly from (−1,1) and for testing it is sampled
uniformly from (−10,10). Based on these settings, sample five training and 10 testing envi-
ronments, each consisting of n = 250 observations using Gaussian noise. More specifically,
for each environment e generate data according to Xe = (Id − B)−1εe, where εe ∈ R

n×(d+1)

and each row is sampled multivariate normal with covariance matrix 0.25 · Id and mean vector
μ which specifies the random mean shift for the intervention variables and is zero everywhere
else.

The prediction performance (in terms of mean residual sum of squares) on the testing
environments is given in Figure 5. The 1000 repetitions are split, depending on whether
MB(Y ) = SBI (Y ) or MB(Y ) �= SBI (Y ) (542 repetitions in the first and 458 repetitions in
the second case). In the case that MB(Y ) = SBI (Y ), we expect all procedures to perform
similarly, as all prediction methods should be generalizable in this case. Only the IV method
performs slightly worse, which is expected, since it generally is an estimator with higher
variance. On the other hand, in the case MB(Y ) �= SBI (Y ) not all methods generalize to the
training method. Only SR and IV are expected to be generalizable in this case. However, IV
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FIG. 5. Prediction results for 1000 repetitions from Simulation 1. SR performs well both when
MB(Y ) = SBI (Y ) (542 repetitions) and when MB(Y ) �= SBI (Y ) (458 repetitions). Apart from SR and IV, no
other method is expected to generalize. The different performance between SR and IV is a finite sample property
and shows that averaging can outperform direct optimization of (2.4).

again performs worse than SR. The reason that AR does not generalize here is that the test
shifts are chosen to be stronger than the training environments. It, therefore, is not able to
guard against these types of shifts.

At first sight it might seem surprising that the performance of SR (and also IV) is sub-
stantially worse when MB(Y ) �= SBI (Y ), compared to when MB(Y ) �= SBI (Y ). The reason
is that in these cases we need to capture two types of signals: (i) predictiveness of a set
of predictors (is a set good at explaining the response) and (ii) stability of a set of predic-
tors (does a set lead to the same model across all environments). The second signal type
requires sufficient heterogeneity in the data and is substantially harder to detect. In contrast,
if MB(Y ) = SBI (Y ), it is sufficient to only detect signal type (i). The outliers in the boxplot
for SR in Figure 5 correspond to settings in which SR was not able to correctly distinguish
between stable predictive sets and nonstable predictive sets. Whenever there are sufficiently
strong interventions in the training environments, SR will perform similarly well in the test as
in the training environment independent of the intervention strength in the test environment.
In Supplementary Material A (Pfister et al. (2021)) (Section F), we show that similar results
are obtained when choosing a different stability threshold.

Based on Simulation 1, we can compute the ground truth sets MB(Y ), SBI (Y ) and
NSBI (Y ) and check how well each method recovers each of these sets. To this end, we com-
pute true and false positive rates for each method, based on its variable importance ranking.
Results are given in Figure 6, where we only consider the 386 cases of the 1000 repetitions
for which SBI (Y ) �= ∅ and NSBI (Y ) �= ∅. The prediction performance on this subset of the
data is very similar to Figure 5 (right) and is given in Supplementary Material A (Pfister et al.
(2021)) (Section F). As one would expect from the prediction results, SR outperforms the
other methods in terms of recovering the stable blanket. Since SR down-weights variables
in the nonstable blanket, it is not expected to recover MB(Y ) and NSBI (Y ) well. However,
SRpred is better in recovering the Markov blanket (comparable with OLS), and hence SRdiff
allows good recovery of the NSBI (Y ). As expected, AR and OLS both are good at recovering
MB(Y ). However, they perform bad in terms of recovery of both SBI (Y ) and NSBI (Y ) and
hence themselves do not allow to distinguish between them. IV, on the other hand, solves the
same optimization as SR and hence aims at recovering SBI (Y ). Similarly, it also down-ranks
variables from NSBI (Y ) but is not quite as good as SR in this respect.
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FIG. 6. Recovery performance based on 386 repetitions (only using repetitions with SBI (Y ) �= ∅ and
NSBI (Y ) �= ∅) from Simulation 1. Each of the different versions of stabilized regression recovers one set well:
SR has the best recovery of SBI (Y ), SRdiff has the best recovery of NSBI (Y ) and SRpred performs competitive
in recovering MB(Y ).

5.2. High-dimensional linear regression. To illustrate that stabilized regression adapts
to high-dimensional settings, we consider the high-dimensional linear simulation described
in Simulation 2. We look at both prediction and variable selection properties of all meth-
ods. Results are given in Figure 7 and Figure 8 and substantiate the conclusions drawn in
Section 5.1.

SIMULATION 2 (High-dimensional linear regression). Randomly sample a DAG with
d = 1001 variables as follows: (i) Sample a causal ordering by randomly permuting the vari-
ables. (ii) From the full graph, based on this causal order, select edges with a probability of
p = 2/(d − 1), so the expected number of edges is d . Fix the first variable to be the response
Y , and denote the adjacency matrix of the resulting DAG by B , that is, Bi,j �= 0 if and only if
there is an edge from node i to node j . For each nonzero entry in B , sample an edge weight
uniformly from (−1.5,−0.5) ∪ (0.5,1.5). Based on this DAG, generate data from differ-
ent environments, consisting of random mean shifts on a subset of the children of Y which
is selected by randomly choosing each child with probability q = 0.9. The mean shifts are

FIG. 7. Prediction results from 1000 repetitions from Simulation 2. SR performs well both when
MB(Y ) = SBI (Y ) (643 repetitions) and when MB(Y ) �= SBI (Y ) (357 repetitions). Apart from IV, no other
method is expected to generalize to these settings. The different performance between IV and SR is even more
pronounced in the high-dimensional settings.
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FIG. 8. Recovery performance based on 248 repetitions (only using repetitions with SBI (Y ) �= ∅ and
NSBI (Y ) �= ∅) from Simulation 2. Each of the different versions of stabilized regression recovers one set well:
SR has the best recovery of SBI (Y ), SRdiff has the best recovery of NSBI (Y ) and SRpred performs competitive
in recovering MB(Y ).

sampled differently, depending on whether the environment is used for training or for test-
ing. Specifically, for training it is sampled uniformly from (−1,1), and for testing it sampled
uniform from (−10,10). Based on these settings, sample five training and 10 testing environ-
ments, each consisting of n = 100 observations using Gaussian noise. More specifically, for
each environment e, generate data according to Xe = (Id−B)−1εe, where εe ∈R

n×(d+1) and
each row is sampled multivariate normal with covariance matrix 0.25 · Id and mean vector
μ which specifies the random mean shift for the children that are intervened on and is zero
everywhere else.

6. Application to biological pathway analysis. In our biological application we aim
to generate novel biological hypotheses about gene function. More specifically, we are in-
terested in two types of questions: (1) If we examine canonical metabolic pathways, can we
identify novel gene relationships interacting with the known pathway and (2) can we classify
gene targets by whether they have a fixed or switching functional dependence on a pathway’s
activity depending on the environment. To answer these questions, we propose applying two
versions of stabilized regression and visualizing the results as in Figure 2. The following
steps describe the procedure:

1. Input: A response variable Y , representing a quantity of interest (e.g., average activation
levels of a pathway), a collection of gene expression levels X1, . . . ,Xd and an environ-
ment variable E indicating different conditions in which the data have been recorded.

2. Stabilized regression: Compute the following two versions of stabilized regression:

(a) SR: Use the p-value of a stability test as stability score and pooled mean squared
prediction error as prediction score.

(b) SRpred: Use the minimum environmentwise mean squared prediction error as pre-
diction score and no stability cutoff.

In both cases, we propose a correlation prescreening to screen to approximately mine
ne

2
variables and a subsampling of subsets of a fixed maximum size (see Section 4.3).

3. Variable importance: Based on these two versions of stabilized regression, compute vari-
able importance scores vSR

j , v
SRpred
j and vSRdiff

j , using one of the variable importance
measures from Section 4.2.
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4. Stability selection: Use stability selection (Meinshausen and Bühlmann (2010)) to com-
pute selection probabilities for the two selection criteria vSR

j > 0 and vSRdiff
j > 0. This

introduces sample stability into the estimates, hence increasing reliability of the results.
5. Visualization: Plot the two types selection probabilities on different axes (x-axis: SRdiff,

y-axis: SR).

The resulting plot visualizes the relation of all predicting genes with the response. It allows
explicitly distinguishing between genes that have a stable functional dependence with the
response across all environments and genes that are predictive but have a functional shift
with respect to the response across environments. The stability selection procedure adds a
theoretical guarantee on the false discovery rate which can be selected by practitioners (green
regions in the plot correspond to the threshold at which the expected number of wrongly
selected variables is at most 1).

In the following sections, we apply stabilized regression to the systems biology application
discussed in Section 1.

DATA SET (Biological pathway analysis). The data set is due to Roy et al. (2019),
Williams et al. (2020), Čuklina et al. (2021) and consists of multiomic data from the tran-
scriptome and proteome of a mouse population of 57 different inbred strains that was split
into two groups, fed either with a low fat or a high fat diet. Liver tissue from these cohorts was
then collected at multiple timepoints across their natural lifespans, providing diet as an in-
dependent biological (environment) variable. In the following application we work with two
parts of this data: (1) Proteomic data consisting of d = 3939 measured genes from n = 315
mice of which 150 had a high and 165 a low fat diet. (2) Transcriptomic data consisting of
d = 25,391 measured from n = 291 mice of which 129 had a high and 162 a low fat diet.
The preprocessed data is part of the Supplementary Material B (Pfister et al. (2021)).

To assess the variable selection performance of stabilized regression on this data set, we
first benchmark our method with other common approaches used to find functionally related
genes (Section 6.1). Second, we discuss whether our proposed method and visualization pro-
cedure is able to distinguish between stable and unstable dependencies (Section 6.2). As there
are only two environments (high fat/low fat diet), it is not feasible to evaluate the predictive
performance of stabilized regression on this data set.

In all of the following experiments, we use a stability score based on the Chow test and
set the cutoff parameters to αpred = 0.01 and αstab = 0.1. Furthermore, we use correlation
pre-screening to screen to 50 variables, subsample 5000 subsets, consisting of at most six
variables, and use vcoef

j as variable importance measure.

6.1. Gene recovery. Validation on real data is often difficult and can only be as good
as the ground truth known about the underlying system. Here, as a rough approximation,
we assume that genes belonging to the same canonical metabolic pathways are functionally
closer than genes not belonging to the same pathway (Francesconi et al. (2008)). Furthermore,
data-driven network approaches to functional gene annotation have proven successful in in-
dependent de novo reconstitution of functional gene ontology sets which have been curated
over decades through molecular experimentation (Dutkowski et al. (2013)). This assumption
is key to any correlation-based discovery approach in biology and is known to be particu-
larly well satisfied in larger protein complexes (Roumeliotis et al. (2017)). Our validation is
based on taking a set of genes from known metabolic pathways, iteratively taking each of
these genes as a response Y , and then observing how many canonical genes from the known
pathway are recovered. We selected seven pathways for this analysis taken from the KEGG
database (Kanehisa and Goto (2000)) and the Reactome Pathway Knowledgebase (Fabregat
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FIG. 9. Recovery analysis for gene Rpl36a from the Ribosome pathway. (Left) Visualization for Rpl36a as
response and all remaining genes as potential predictors. Canonical Ribosome genes are marked with a triangle
all other genes with a circle. Many correct genes are ranked high. (Right) pROC for different methods, where
canonical Ribosome genes are considered true positives and all other genes false positives.

et al. (2017)). More details are given in Supplementary Material A (Pfister et al. (2021)). In
our analysis we use diet (low-fat vs. high-fat) as an environment variable. The result of ap-
plying the procedure described above to a single gene from the Ribosome pathway results in
Figure 9 (left); Figure 2 shows the same analysis for a different pathway. To visualize which
other genes belong to this pathway, we have drawn these genes as triangles. We compare the
recovery performance of our method with the following competing variable selection meth-
ods: (i) Corr: pairwise correlation on the pooled data (including both diets), (ii) Corr (env):
maximum of the pairwise correlation on each diet individually, (iii) Lasso: �1-penalized re-
gression, (iv) Ridge: �2-penalized regression and (v) IV (Lasso): a Lasso based version of
anchor regression with γ = 1000. The performance is then assessed by computing partial
receiver operator curves (pROC) with up to 10 false positives, as shown in Figure 9 (right).
We did this for all genes from the pathway and summarized the resulting pROCs using the
normalized area under these curves, called pAUC (partial area under the receiver operator
curve). The results for the Ribosome pathway are shown in Figure 10.

FIG. 10. Recovery analysis with mRNA data based on the Ribosome pathway using diet as an environment
variable. (Left) Box plot of pAUC values for recovery of different genes belonging to the Ribsome pathway. (Right)
Relative difference of each pAUC value compared to SR. Values below 0 imply worse pAUC, compared to SR.
Stabilized regression outperforms the competing methods.
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The results for all seven pathways (both for mRNA and protein data) are given in Sup-
plementary Material A (Pfister et al. (2021)). While in many cases the results are not as
pronounced as for the Ribsome pathway, one can see that, in most cases, stabilized regres-
sion performs at least as good as other competitors and often better. The differences between
methods is less obvious for protein data for which basic correlation screening often performs
very well. We believe this might be due to the fact that proteins are one step closer to the
biological processes, and hence these measurements capture the functional relations more
directly.

6.2. The advantage of intervention stability. A key advantage of our method is that it
allows to group genes based on whether their dependence on the response is stable or un-
stable with respect to some exogenous environment variable. We illustrate this with Figure 2
(and Figure 9 (left)). The green region of significant findings can be divided into three parts
that should be interpreted differently. The first region is the top left area of the plot. Genes
that appear there are detected only by SR and not by SRpred which implies that they might
not be the most predictive genes but depend on the response in a stable fashion across all
environments. The second region is the bottom right part of the plot. These genes are only
found by SRpred and not by SR. This means that they are strongly predictive for the response
in at least one of the environments, but the dependence with the response changes across
environments. Finally, the third area is the top right corner of the plot in which the green
areas overlap. Genes in this area are significantly reduced in importance in SR, compared to
SRpred but still remain significant in terms of SR. This can happen if the stability cutoff is
not consistently removing the same genes in all cases which means that the variations across
environments are not sufficiently strong to distinguish whether these genes are stable or un-
stable. While no conclusion can be drawn on whether these genes are stable or unstable, they
can be considered to be predictive for the response.

7. Discussion. We propose a regression framework for multi-environment settings. Our
novel algorithm, stabilized regression, averages over regression estimates, based on subsets
of predictors, in order to regularize the final predictions to be both predictive and stable across
environments. We relate this setting to causal models and prove that, under mild conditions,
there exists an optimal subset of predictors called the stable blanket which generalizes across
environments while minimizing the mean squared prediction loss. Furthermore, we show
that one can separate the Markov blanket into the stable blanket and the nonstable blanket
which allows to characterize predictive variables by whether they have a stable or unstable
functional dependence on the response. Using this framework, we propose a procedure that
assists hypothesis generation in systems biology and demonstrate its usefulness on a current
multiomic data set. The procedure is shown to perform well in terms of recovery on known
biological pathways and, additionally, allows to separate findings into stable and unstable
predictors.

While our framework can be combined with any regression procedure, we focus on the
case of linear models. Future research should, therefore, assess how these ideas perform on
nonlinear regression problems. In those settings, one needs to be more careful about how to
deal with shift interventions, since extrapolation might not be well defined anymore. A further
interesting direction would be to consider different notions of stability, other than the one
considered here, based on the conditional invariance defined in (2.1).
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ČUKLINA, J., LEE, C. H., WILLIAMS, E. G., SAJIC, T., COLLINS, B. C., RODRIGUEZ MARTINEZ, M.,
SHARMA, V. S., WENDT, F., GOETZE, S., KEELE, G. R. et al. (2021). Molecular systems biology. Batch
effects in large-scale proteomics studies: diagnostics and correction.

DAWID, A. P. (2002). Influence diagrams for causal modelling and inference. Int. Stat. Rev. 70 161–189.
DUTKOWSKI, J., KRAMER, M., SURMA, M. A., BALAKRISHNAN, R., CHERRY, J. M., KROGAN, N. J. and

IDEKER, T. (2013). A gene ontology inferred from molecular networks. Nat. Biotechnol. 31 38–45.
FABREGAT, A., JUPE, S., MATTHEWS, L., SIDIROPOULOS, K., GILLESPIE, M., GARAPATI, P., HAW, R.,

JASSAL, B., KORNINGER, F. et al. (2017). The reactome pathway knowledgebase. Nucleic Acids Res. 46(D1)
D649–D655, 11. https://doi.org/10.1093/nar/gkx1132

FAN, J. and LV, J. (2008). Sure independence screening for ultrahigh dimensional feature space. J. R. Stat. Soc.
Ser. B. Stat. Methodol. 70 849–911. MR2530322 https://doi.org/10.1111/j.1467-9868.2008.00674.x

FRANCESCONI, M., REMONDINI, D., NERETTI, N., SEDIVY, J. M., COOPER, L. N., VERONDINI, E., MI-
LANESI, L. and CASTELLANI, G. (2008). Reconstructing networks of pathways via significance analysis of
their intersections. BMC Bioinform. 9 9.

GANIN, Y., USTINOVA, E., AJAKAN, H., GERMAIN, P., LAROCHELLE, H., LAVIOLETTE, F., MARCHAND, M.
and LEMPITSKY, V. (2016). Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17 Paper
No. 59, 35. MR3504619

HAAVELMO, T. (1944). The probability approach in econometrics. Econometrica 12 S 118. MR0010953
https://doi.org/10.2307/1906935

HEINZE-DEML, C. and MEINSHAUSEN, N. (2021). Conditional variance penalties and domain shift robustness.
Mach. Learn. 110 303–348. MR4207502 https://doi.org/10.1007/s10994-020-05924-1

HEINZE-DEML, C., PETERS, J. and MEINSHAUSEN, N. (2018). Invariant causal prediction for nonlinear models.
J. Causal Inference 6.

https://doi.org/10.1214/21-AOAS1487SUPPA
https://doi.org/10.1214/21-AOAS1487SUPPB
http://www.ams.org/mathscinet-getitem?mr=4148216
https://doi.org/10.1214/19-STS721
http://www.ams.org/mathscinet-getitem?mr=3689307
https://doi.org/10.1111/rssb.12228
http://www.ams.org/mathscinet-getitem?mr=0141193
https://doi.org/10.2307/1910133
http://www.ams.org/mathscinet-getitem?mr=3737904
https://doi.org/10.1214/16-AOS1537
https://doi.org/10.1093/nar/gkx1132
http://www.ams.org/mathscinet-getitem?mr=2530322
https://doi.org/10.1111/j.1467-9868.2008.00674.x
http://www.ams.org/mathscinet-getitem?mr=3504619
http://www.ams.org/mathscinet-getitem?mr=0010953
https://doi.org/10.2307/1906935
http://www.ams.org/mathscinet-getitem?mr=4207502
https://doi.org/10.1007/s10994-020-05924-1
https://doi.org/10.1214/21-AOAS1487SUPPB
https://doi.org/10.1111/rssb.12228


STABILIZING VARIABLE SELECTION AND REGRESSION 1245

HOETING, J. A., MADIGAN, D., RAFTERY, A. E. and VOLINSKY, C. T. (1999). Bayesian model averaging:
A tutorial. Statist. Sci. 14 382–417. With comments by M. Clyde, David Draper and E. I. George, and a
rejoinder by the authors. MR1765176 https://doi.org/10.1214/ss/1009212519

HOOVER, K. D. (1990). The logic of causal inference. Econ. Philos. 6 207–234.
IMBENS, G. W. and RUBIN, D. B. (2015). Causal Inference—for Statistics, Social, and Biomedical Sciences: An

Introduction. Cambridge Univ. Press, New York. MR3309951 https://doi.org/10.1017/CBO9781139025751
KANEHISA, M. and GOTO, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28

27–30. https://doi.org/10.1093/nar/28.1.27
MEINSHAUSEN, N. and BÜHLMANN, P. (2010). Stability selection. J. R. Stat. Soc. Ser. B. Stat. Methodol. 72

417–473. MR2758523 https://doi.org/10.1111/j.1467-9868.2010.00740.x
PAN, S., TSANG, I., KWOK, J. and YANG, Q. (2010). Domain adaptation via transfer component analysis. IEEE

Trans. Neural Netw. 22 199–210.
PEARL, J. (2009). Causality: Models, Reasoning, and Inference, 2nd ed. Cambridge Univ. Press, Cambridge.

MR2548166 https://doi.org/10.1017/CBO9780511803161
PELLET, J.-P. and ELISSEEFF, A. (2008). Using Markov blankets for causal structure learning. J. Mach. Learn.

Res. 9 1295–1342. MR2426044
PERRONE, M. and COOPER, L. (1992). When networks disagree: Ensemble methods for hybrid neural networks.

Technical report, Brown Univ., Providence RI, Institute for Brain and Neural Systems.
PETERS, J., BÜHLMANN, P. and MEINSHAUSEN, N. (2016). Causal inference by using invariant prediction:

Identification and confidence intervals. J. R. Stat. Soc. Ser. B. Stat. Methodol. 78 947–1012. With comments
and a rejoinder. MR3557186 https://doi.org/10.1111/rssb.12167

PETERS, J., JANZING, D. and SCHÖLKOPF, B. (2017). Elements of Causal Inference: Foundations and Learning
Algorithms. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA. MR3822088

PFISTER, N., BAUER, S. and PETERS, J. (2019). Learning stable and predictive structures in kinetic systems.
Proc. Natl. Acad. Sci. USA 116 25405–25411. MR4047351 https://doi.org/10.1073/pnas.1905688116

PFISTER, N., BÜHLMANN, P. and PETERS, J. (2019). Invariant causal prediction for sequential data. J. Amer.
Statist. Assoc. 114 1264–1276. MR4011778 https://doi.org/10.1080/01621459.2018.1491403

PFISTER, N., WILLIAMS, E. G., AEBERSOLD, R. and BÜHLMANN, P. (2021). Supplement to “Stabiliz-
ing variable selection and regression.” https://doi.org/10.1214/21-AOAS1487SUPPA, https://doi.org/10.1214/
21-AOAS1487SUPPB

RICHARDSON, T. and ROBINS, J. M. (2013). Single world intervention graphs (SWIGs): A unification of the
counterfactual and graphical approaches to causality. Center for the Statistics and the Social Sciences, Univ.
Washington Series. Working Paper 128, 30 April 2013.

ROJAS-CARULLA, M., SCHÖLKOPF, B., TURNER, R. and PETERS, J. (2018). Invariant models for causal trans-
fer learning. J. Mach. Learn. Res. 19 Paper No. 36, 34. MR3862443

ROTHENHÄUSLER, D., MEINSHAUSEN, N., BÜHLMANN, P. and PETERS, J. (2021). Anchor regression: Hetero-
geneous data meet causality. J. R. Stat. Soc. Ser. B. Stat. Methodol. 83 215–246. MR4250274 https://doi.org/10.
1111/rssb.12398

ROUMELIOTIS, T. I., WILLIAMS, S. P., GONÇALVES, E., ALSINET, C., DEL CASTILLO VELASCO-
HERRERA, M., ABEN, N., GHAVIDEL, F. Z., MICHAUT, M., SCHUBERT, M. et al. (2017). Genomic de-
terminants of protein abundance variation in colorectal cancer cells. Cell Rep. 20 2201–2214.

ROY, S., SLEIMAN, M. B., JHA, P., WILLIAMS, E. G., INGELS, J. F., CHAPMAN, C. J., MCCARTY, M. S.,
HOOK, M., SUN, A. et al. (2019). Modulation of longevity by diet, and youthful body weight, but not by
weight gain after maturity. Preprint bioRxiv:776559.

SCHÖLKOPF, B., JANZING, D., PETERS, J., SGOURITSA, E., ZHANG, K. and MOOIJ, J. M. (2012). On causal
and anticausal learning. In Proceedings of the 29th International Conference on Machine Learning (ICML)
1255–1262. Omnipress.

SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461–464. MR0468014
SHAH, R. D. and BÜHLMANN, P. (2018). Goodness-of-fit tests for high dimensional linear models. J. R. Stat.

Soc. Ser. B. Stat. Methodol. 80 113–135. MR3744714 https://doi.org/10.1111/rssb.12234
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267–288.

MR1379242
WANG, S., NAN, B., ROSSET, S. and ZHU, J. (2011). Random Lasso. Ann. Appl. Stat. 5 468–485. MR2810406

https://doi.org/10.1214/10-AOAS377
WILLIAMS, E. G., PFISTER, N., ROY, S., STATZER, S., INGELS, J., BOHL, C., HASSAN, M., ČUKLINA, J.,
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