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Distributionally Robust and Generalizable
Inference
Dominik Rothenhäusler and Peter Bühlmann

Abstract. We discuss recently developed methods that quantify the stabil-
ity and generalizability of statistical findings under distributional changes.
In many practical problems, the data is not drawn i.i.d. from the target pop-
ulation. For example, unobserved sampling bias, batch effects, or unknown
associations might inflate the variance compared to i.i.d. sampling. For re-
liable statistical inference, it is thus necessary to account for these types of
variation. We discuss and review two methods that allow to quantify distri-
bution stability based on a single dataset. The first method computes the sen-
sitivity of a parameter under worst-case distributional perturbations to un-
derstand which types of shift pose a threat to external validity. The second
method treats distributional shifts as random which allows to assess average
robustness (instead of worst-case). Based on a stability analysis of multiple
estimators on a single dataset, it integrates both sampling and distributional
uncertainty into a single confidence interval.

Key words and phrases: Distributional robustness, external validity, gener-
alizability, stability, uncertainty quantification.

1. INTRODUCTION

Uncertainty quantification and inference in terms of
confidence statements in complex models has been a core
topic in statistics over many decades. In the last 10 years,
substantial progress has been made for high-dimensional
and complex models, and we will briefly review these de-
velopments in Section 1.2. The main focus of this paper
is different though, namely about generalizability and ex-
ternal validity of statistical findings and its corresponding
inference. In ordinary language: if a statistical result is
significant in a study (i.e., a dataset), to what extent can
it be expected to be significant in another study which is
similar but not exactly of the same nature as the original
one? This question and corresponding solutions can be
mathematically formalized, and we will describe them in
Sections 2–4. Such generalizability and external validity
of statistical inference is often of major interest in the con-
text of empirical studies in, for example, medicine, public
health, or economics [60, 67].

To judge the generalizability and trustworthiness of a
statistical result, it is crucial to investigate the fragility of
the analysis. Yu and Kumbier [70] discuss different types
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of perturbations that can be injected in the analysis pro-
cess. If multiple datasets are available, one can adjust in-
ference to account for the fact that the target population
is different from the population at hand. As an example,
[15] consider the problem of transporting inferences from
multiple randomized trials to a new target population: the
new population, which is not among the observed multi-
ple datasets and potentially of slightly or moderately dif-
ferent nature is the one for which we want to generalize
to.

Having statistical inference tools which are externally
valid for somewhat different populations than the ones in
the data is a crucial component for improving replicabil-
ity of statistical (and scientific) results. The famous arti-
cle by John Ioannidis [35] on the replicability crisis men-
tions major issues about biases from reporting and dif-
ferent protocols. Distributionally robust statistical proce-
dures for confidence statements can be useful for address-
ing an aspect of the replication problem, without explic-
itly aiming to understand its possibly very diverse set of
underlying reasons.

1.1 Internal and External Validity

We consider the setting where the data are realizations
from either a single data-generating distribution P ′ or a
set of data-generating distributions {P ′

e; e ∈ E} where e is
an index for a subpopulation and E is the space of ob-
served sup-populations in the data. We typically assume
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that the data are i.i.d. or independent realizations depend-
ing on fixed covariates from these distribution(s) P ′ (or
P ′

e); but the framework also includes sampling from a
stochastic process or structured sampling in mixed effects
models.

An inferential statistical statement for a parameter θ(·)
is called internally valid if it is statistically valid (or cor-
rect) for θ(P ′) or θ(P ′

e) for some e ∈ E . Note that the
parameter is a functional of the distribution P , Pe or P ′.
Thus, the parameter of interest θ(·) is a functional of a
data generating distribution from which the observed data
arises. On the other hand, external validity is concerned
about a parameter θ(P ), where P �= P ′ or P �= P ′

e for all
e ∈ E . Thus, external validity is about a parameter of a dis-
tribution which has not been seen in the data, for example
a regression parameter in new data which has a different
data generating distribution than the one generating the
observed (training) data.

There is a fast growing literature on the theme of ex-
ternal validity, including distributional robustness [62],
domain adaptation and transfer learning [49], and trans-
portability [52]. We will present a brief summarizing view
of them in Section 2. On the other hand, there is very little
work on distributionally robust confidence statements. We
review here some of the work from the latter topic [25,
36] and provide an overarching perspective of the state-
of-the-art.

1.2 Internal Sampling Stability

Stability is an important concept to obtain higher de-
gree of replicability. The easiest version is internal sam-
pling stability and is often implemented via subsampling
or bootstrapping the observed data [45, 43, 69, 9, 32, 70].
Inspecting and improving sampling stability is particu-
larly useful for complex models and corresponding pro-
cedures: we mention here as some examples uncertainty
assessment in high-dimensional models [71, 63, 18, 64,
48].

Other forms of stability can be even used for external
validity, and this is discussed in Section 2.

1.2.1 Post-selection inference. Since uncertainty quan-
tification is difficult and often fragile in complex models,
post-selection inference procedures became rather popu-
lar [7, 40, 38]. They are reliable and provide good internal
replicability for the discovery of a particular selected hy-
pothesis. However, if some data-driven model selection
with, for example, the Lasso is performed [40, 38], the
entire procedure becomes often unstable and leads to a
very bad degree of replicability. The reason for it is as
follows: the Lasso would typically pick a different set of
selected variables on another dataset (or a subsampled
one) and hence, the inference after selection will also fo-
cus on a different parameter and its hypothesis: it is as
much not replicable as the difference among the selected

models from the Lasso. This point is often not made very
explicit and things are expected to worsen when it comes
to external validity.

2. EXTERNAL VALIDITY OF POINT ESTIMATION:
DISTRIBUTIONAL ROBUSTNESS, DOMAIN

ADAPTATION AND CAUSALITY

External validity and corresponding (point) estimation
strategies have been developed from different perspec-
tives, all of them aiming to address the issue when the
external (new) data has a different distribution than the
original internal (training) data. In the following, we give
a high-level description of the topic.

2.1 Robust Methods

Protection against small-to-medium unknown perturba-
tions can be achieved with robust methods. For large per-
turbations, these procedures become conservative. There
is an important distinction between “classical” and distri-
butional robustness.

In the former “classical” case, the goal is to estimate a
parameter of the unperturbed reference (or target) distri-
bution when the (training) data is contaminated and often
interpreted as realizations of a mixture of the reference
and contamination distribution. There is only internal
data, and the contaminations are among the observed sam-
ples. The methodology proceeds by data-driven down-
weighting of outliers (contaminated data points), giving
them less weight than 1/n with n denoting the total (in-
ternal) sample size. See, for example, [30, 26].

In distributional robustness the aim is to predict well
under adversarial perturbations in the external test data
and the parameter of interest is with respect to a perturbed
adversarial distribution. Here, the training dataset is inter-
nal and clean, while the contaminations or perturbations
are not among the observed training data. This scenario is
often relevant in modern machine learning. In this concep-
tual description, distributional robustness arises from up-
weighting certain data points (giving them more weight
than 1/n) in order to achieve good performance on test
data. For example, in regression one would aim to esti-
mate a function f (·) which optimizes

argmin
f (·)∈F

sup
P ;d(P,P ′)≤ρ

EP

[(
Y − f (X)

)2]
,

where F is a suitable class of functions, P ′ is the in-
ternal training distribution, P is the external distribution,
d(·, ·) a metric between probability distributions, ρ a cer-
tain positive number, Y a univariate response, and X the
vector of covariates (and (Y,X) ∼ P ) [5, 8].

2.2 Domain Adaptation and Re-Weighting

Domain adaptation methods can cope with large dis-
tributional shift and perturbations from the training data
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distribution P ′ to a target (test) distribution P which gen-
erates new data. This can be achieved by re-weighting
which takes the distributional change into account [41,
39].

For example, one might be interested in

argmin
f (·)∈F

EP

[(
Y − f (X)

)2]
= argmin

f (·)∈F
EP ′

[(
Y − f (X)

)2
w(X,Y )

]
,

Here, w(X,Y ) = dP
dP ′ (X,Y ) is the Radon–Nikodym

derivative. The results above motivate weighted empiri-
cal risk minimization:

f̂ = argmin
f (·)∈F

1

n

n∑
i=1

ŵ(Xi, Yi)
(
Yi − f (Xi)

)2
,

for some estimate ŵ(•) of w(•). There is often an as-
sumption that restricts the shift in a particular way. For
example, if w(•) only depends on X, we are in the popu-
lar setting of covariate shift [56], cf. There is an underly-
ing assumption about some overlap between the training
and target (or test) distribution which then enables adapt-
ing to a different domain which may be far away in terms
of a probabilistic distance.

In a different line of work, one tries to learn invariant
representations of the features [49, 3]. This is based on
the idea that if a representation of the data is invariant be-
tween the training distribution P ′ and target distribution
P , then feeding these representations into a prediction
algorithm might exhibit improved generalizability com-
pared to feeding the untransformed data into a prediction
algorithm.

The empirical success of such domain adaptation meth-
ods and algorithms is primarily documented in the field of
computer vision [24, 23, 53]: indeed, it is remarkable that
even though d(P,P ′) is large for a metric d(·, ·), it is pos-
sible to accurately learn from P ′ some aspects about P .

2.3 Invariance and Causality

Another framework for achieving external validity is to
learn causal representations which are able to generalize
well outside the internal data. This includes invariance of
feature representations [27], or of residuals and learning
some causal structures [54, 57, 42, 28, 10, 59]. With such
structural approaches and models, no overlap assumption
between P ′ and P is required but they typically rely on
multiple sources or environments for learning the invari-
ances. Unlike distributional robustness but in the same
vein as domain adaptation, these methods allow for large
distributional shifts and interventions between the internal
and external data-generating distributions.

2.4 The Role of Multiple Sources or Environments

Internal training data which is grouped according to
different sources or groups under different environments,
denoted above by e ∈ E with E being the space of ob-
served environments, provides useful information for ex-
ternal generalization. The main reason is that internal
sources of heterogeneity can be used to model distribu-
tional shifts, invariances or infer causal structure. Such
multisource/environment information has been exploited
from a theory and practical point of view: for optimizing
worst environment risk [44, 11, 61], for domain adapta-
tion [23, 3, 27, 12], and for causal regularization aiming
to obtain invariant residuals [54, 28, 59, 2].

We also note that instrumental variables regression is
related to multienvironment problems [1, 33, 34]. If the
instruments are discrete, they can be thought as encod-
ing different environments, but IV regression also covers
continuous forms of heterogeneity. A main and strong as-
sumption is the so-called validity of such instruments: un-
der such strong conditions, the invariant structure is equal
to the causal structure, and a causal model is also exter-
nally valid under arbitrarily strong perturbations of the co-
variates.

3. DISTRIBUTIONALLY ROBUST UNCERTAINTY
QUANTIFICATION

Considerations of external validity not only affect
(point) estimation strategies, but should also affect how
we report uncertainty. If data from multiple environ-
ments are available, one can conduct some type of meta-
analysis. For example, partial conjunction tests [29, 6,
66] allow to conduct valid inference in situations where a
few of the datasets are perturbed. Such analysis provides
internal validity among the different environments only.
It cannot go beyond the internal multienvironment data.
If only one dataset is available, there exist much fewer
methods that account for distributional uncertainty. Exist-
ing methods either:

• employ worst-case bounds between the distribution of
P ′ and P ; or

• assume that the probabilities of events change ran-
domly between P ′ and P .

As an example of the first approach, assume that we
know that DKL(P‖P ′) ≤ δ, where DKL(·‖·) denotes the

Kullback–Leibler divergence, and that Xi
i.i.d.∼ P ′, with

P ′ = N (μ,1). We aim to construct a confidence interval
I = I (X1, . . . ,Xn, δ) which is uniformly valid over the
Kullback–Leibler ball, that is,

(1) inf
P :DKL(P‖P ′)≤δ

P
[
EP [X] ∈ I

] = 1 − α.

Using some algebra, we get that

I = 1

n

n∑
i=1

Xi ±
(

z1−α/2√
n

+ √
2δ

)
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satisfies equation (1), where z1−α/2 is the 1 − α/2 quan-
tile of a standard Gaussian random variable. This robust
confidence interval is similar in spirit to robust versions of
the probability ratio test [31] in the sense that one needs to
prespecify the strength of perturbations δ. Note that this
confidence interval has a component that does not con-
verge to zero as n → ∞.

Another approach is given by sensitivity analysis in
causal inference, which investigates the stability of a sta-
tistical finding under (potential) unobserved confounding
[14, 58]. Today this is a field of active research [19, 72, 13,
68, 21, 37]. Such sensitivity analysis is of the following
nature. First, the tools are usually specific to the estima-
tion strategy, and thus have to be used on a case-by-case
basis. Second, when considering worst-case distributional
perturbations, very small shifts can already change results
substantially. Since most sensitivity analyses are measur-
ing worst-case stability, reported “instabilities” often oc-
cur due to the overly conservative worst-case analysis.

In the following, we describe how these issues can po-
tentially be addressed by a different type of sensitivity or
stability analysis which is takes a “directional worst-case”
view point.

3.1 Towards General-Purpose Tools for Stability
Analysis

Often, practitioners are interested in sign stability of a
one-dimensional statistical parameter. To be more spe-
cific, one might want to infer whether sign(θ(P )) =
sign(θ(P ′)) ≈ sign(θ̂) for a reasonable set of perturbed
distributions P ∈ P . The motivation behind sign stability
is that the parameter might correspond to whether or not a
medication has a positive effect. We can quantify the sign
stability by estimating

(2)
s = exp

(
− inf

P
DKL

(
P‖P ′)

such that sign
(
θ
(
P ′)) �= sign

(
θ(P )

))
.

In example above, sign stability captures whether a medi-
cation that has a beneficial effect on the observed popula-
tion might be harmful under distribution shift.

In analogy to the p-value, if s is close to zero, the sign
of θ(·) is very stable under distributional changes. On the
other hand, if s is close to one, the sign is highly unstable
under distributional changes.

Let’s consider an example. Assume we are interested in
estimating the mean θ(P ) = EP [X]. Donsker and Varad-
han [20] showed that if the moment generating function
of X is finite, then

s = inf
λ
EP ′

[
eλX]

,

where P ′ is from the data generating distribution and
hence can be inferred from observed data.

In fact, for i.i.d. observations Xi ∼ P ′ we can use the
following plug-in estimator of the distributional stability
measure s:

ŝ = inf
λ

1

n

n∑
i=1

eλXi .

Consistency guarantees for this estimator of stability are
given in [25]. For other estimands than the expected value,
such as parameters in generalized linear models or es-
timands defined via moment equations, estimating s is
more involved since Donsker–Varadhan does not apply
directly.

In practice, one can use simple linear approximations
to estimate s. If the estimand θ(·) is differentiable as a
functional on the distribution space, by definition

(3) θ(P ) − θ
(
P ′) = EP

[
φP ′(D)

] + o
(
dK

(
P,P ′))

for some metric dK(·, ·) such as the Kolmogorov met-
ric and a function φP ′(D) with EP ′ [φP ′(D)] = 0. Then
Donsker–Varadhan suggests using the estimator

(4) ŝ = inf
λ

1

n

n∑
i=1

eλ(θ̂+φ̂(Di)),

where φ̂ is an estimate of the influence function φP ′(·) and
θ̂ is an estimate of θ(P ′). For example, if (X,Y ) ∈ R

p+1

and θ(P ) is the kth component of the regression vector,
that is θ(P ) = βk(P ), where

β(P ) = arg min
β

EP

[
(Y − Xβ)2]

,

then one can estimate φP ′(Di) via

φ̂(Di) =
(

1

n

n∑
j=1

X
ᵀ
j Xj

)−1

k,•
X

ᵀ
i (Yi − Xiβ̂),

where β̂ = arg minβ
1
n

∑n
j=1(Yj − Xjβ)2. As before, the

data (Xi, Yi)i=1,...,n is drawn i.i.d. from P ′. This strategy
allows to estimate s for common estimands such as pa-
rameters of generalized linear models or parameters de-
fined via moment equations. Algorithms with consistency
guarantees are given in [25].

These s-values can then be compared to benchmarks.
As an example, in [17], the authors compute benchmarks
for different national surveys (e.g., ANES and CES).
To be more concrete, they estimate benchmarks b̂P ,P ′ =
e−D̂KL(P‖P ′) for P and P ′ corresponding to different na-
tional surveys. They report that the empirical mean of the
estimated b̂, averaged over multiple pairs of surveys is
0.86. This puts distributional stability measures into con-
text. For example, if the s-value of a statistical result in a
similar application is larger than 0.86, then this is an in-
dication that the result might not generalize; in the sense
that a distribution shift of the size that is observed be-
tween different national surveys is large enough to change



REPLICABILITY AND GENERALIZATION 531

the sign of the result. Note that for simplicity we have
ignored statistical uncertainty quantification. Details on
how to compute confidence intervals for s-values can be
found in [25].

Of course, distributional stability measures are context
dependent. In [17], it is argued that one has to choose a
smaller threshold when generalizing from national sur-
veys to samples from Amazon Mechanical Turk (MTurk).

Under arbitrary distribution shifts, one will usually be
able to change the sign of statistical parameters under very
small shifts. Thus, to make the tools more useful in prac-
tice, it is important to restrict the class of considered dis-
tribution shifts.

3.1.1 Beyond omni-directional shifts. In principle, any
statistical finding breaks down under arbitrary distribu-
tional shifts. Thus, a practitioner might be interested in
learning under what circumstances (that is, under which
type of distribution shifts) a result breaks. As an exam-
ple, maybe a correlation between two variables is nearly
invariant across populations with different socioeconomic
status, but highly variable across different age groups.

In the following, we will discuss how targeted sensitiv-
ity or stability analysis can be formalized. Related to the
definition of s in (2), for a random variable E which is
observed in the data,

sE = exp(− inf
P :P [·|E]=P ′[·|E] DKL

(
P‖P ′)

such that sign
(
θ(P )

) �= sign
(
θ
(
P ′))).(5)

Formally, sE is a deterministic value that lies in [0,1];
the constraint P [·|E] = P ′[·|E] is meant to hold almost
surely w.r.t. E. In words, we investigate how much a shift
in the marginal distribution of E can affect the parameter,
while keeping the conditional distribution P [·|E] invari-
ant.

Estimation of this stability parameter relies on a varia-
tion of Donsker–Varadhan’s lemma [20]. Using a similar
approximation as for equation (4), sE can be estimated via

(6) ŝE = inf
λ

1

n

n∑
i=1

eλ(θ̂+Q̂(Ei)),

where Q̂(e) is an estimate of Q(e) = EP ′ [φP ′(D)|E = e].
A formal justification of this estimator is given in [25].

Let’s return to the case of linear regression with X = E,
with X being potentially multidimensional. This means
we are considering a distribution shift in the covariates
while keeping Y |X constant. For θ(P ) = βk(P ), a short
calculation shows that

Q(Xi) = EP ′
[
XᵀX

]−1
k,•X

ᵀ
i

(
EP ′ [Y |X = Xi] − Xiβ

(
P ′)).

Based on this observation one can form a plug-in estima-
tor of Q(x) and use equation (6) to estimate the direc-
tional stability coefficient sE . Note that if the model is

well-specified, EP ′ [Y |X = x] − xβ(P ′) = 0 and thus the
stability value sX is zero as long as θ(P ′) �= 0. Thus, for
the specific choice of E = X, the directional stability co-
efficient sE captures whether the model is well-specified.

3.1.2 Real-world example. We demonstrate the usage
of the stability measure sE in (5) on the life-cycle sav-
ings data [4]. The dataset contains measurements of the
ratio between personal savings divided by disposable in-
come (savings ratio—sr), the percentage of population
under 15 (pop15), and the percentage of population over
75 (pop75), the disposable income (dpi) and the growth
rate of the disposable income (ddpi). Under Modigliani’s
life-cycle savings hypothesis [46], the savings ratio is ex-
plained by these four covariates. We want to investigate
the robustness of the linear model under various distri-
butional shifts. A package implementing the estimation
of the directional stability measure sE from (5) as in (6)
can be obtained from github.com/rothenhaeusler/stability.
The following R code fits a linear model and computes the
stability of the linear regression coefficient corresponding
to pop15, that is, the stability of θ(P ) = βpop15(P ) for
different choices of E. We consider distribution shift both
in single components of X, but also in the outcome Y :

Here, the names of the different columns correspond to
the different choices of E.

These values can be used to compare the relative stabil-
ity of parameter values under different choices of E, for
example, using the smallest ŝE as the baseline stability
value. In addition, these robustness or stability measures
can be compared to reference values computed across
real-world datasets, as discussed in the previous section.
For the population of the United States, based on the cen-
sus of 2016, we get an estimate of the benchmark value
b̂ = 0.17 for the change in the distribution of pop15. As
b̂ = 0.17 is smaller than ŝpop15 = 0.368 (see the output
above), we have to be concerned that due to a large shift
in the distribution of pop15, the sign of the regression
coefficient might change if we were to collect new data
from the US. On the other hand, for Mexico the estimate
is b̂ = 0.54 which is larger than ŝpop15 = 0.368. This sug-
gests that we do not have to be concerned that a shift in
pop15 changes the regression coefficient if we were to
collect new data from Mexico. Such calculations allow
us to gauge the extent to which a result will generalize.

In addition to s-values, the R-function stability
provides a visualization of the stability of parameters un-
der distributional shifts. More concretely, for different

http://github.com/rothenhaeusler/stability


532 D. ROTHENHÄUSLER AND P. BÜHLMANN

FIG. 1. Stability of the parameter pop15 under various distributional
shifts as reported by stability(). Each coloured pair of lines cor-
responds to the different individual components of the parameter vec-
tor and displays the estimated versions of (7) and (8), respectively.

choices of E and an upper bound on the distribution shift
x we compute upper and lower bounds for parameter val-
ues as follows:

yupper-bound = sup θ(P ) such that
(7)

P ′[·|E] = P [·|E] and DKL
(
P‖P ′) ≤ x,

ylower-bound = inf θ(P ) such that
(8)

P ′[·|E] = P [·|E] and DKL
(
P‖P ′) ≤ x.

In Figure 1, we visualize estimated versions (based on
a linear approximation and plug-in) of these upper and
lower bounds across x for different choices of the vari-
able E.

This plot allows to derive bounds on parameters based
on background knowledge. For example, if the data sci-
entist expects that the distribution of dpi is expected to
shift by at most 0.5 in Kullback–Leibler divergence be-
tween settings, then one would obtain an (estimated) up-
per bound of −0.2 for the parameter.

4. CONFIDENCE INTERVALS THAT ACCOUNT FOR
BOTH SAMPLING AND DISTRIBUTIONAL

UNCERTAINTY

The diagnostic tools discussed in the previous section
can be conservative since they still rely on possibly di-
rectional worst-case bounds. In practice, we need not be
that pessimistic and thus we consider here average pertur-
bation effects. Furthermore, we will describe procedures
which do not rely on the user’s interpretation of stabil-
ity values but estimate the amount of perturbations from
data.

For our further developments, we model the perturba-
tion process as random. Intuitively speaking, if the data

D1, . . . ,Dn is drawn i.i.d. from the sampling distribution
P ′ which randomly deviates from the target distribution
P , we can decompose uncertainty into a sampling com-
ponent and a distributional component:

θ
(
P ′

n

) − θ(P ) = θ
(
P ′

n

) − θ
(
P ′)︸ ︷︷ ︸

sampling uncertainty

+ θ
(
P ′) − θ(P )︸ ︷︷ ︸

distributional uncertainty

.

Here, P ′
n denotes the empirical measure of D1, . . . ,Dn.

Compared to classical statistical inference, we aim to
construct confidence intervals for the target θ(P ), instead
of the parameter of the sampling distribution θ(P ′). How-
ever, without any restrictions on the perturbation process,
it is impossible to quantify the magnitude of θ(P ′) −
θ(P ). This raises the question about the distributional per-
turbation model.

4.1 A Model for Distributional Perturbations

An easy and perhaps natural distributional perturbation
model is as follows. For any event, the perturbed distribu-
tion will assign slightly different probabilities compared
to the target distribution P . To simplify the discussion in
the following, we will assume that the sample space D
is discrete with uniform weights on the singletons, that
means for all d ∈D

P [D = d] = 1

|D| .
A perturbed distribution can now be formed by drawing
exchangeable random variables ξi ≥ 0 (i = 1, . . . , |D|)
with

∑
i ξi = 1, and setting

P ξ [D = di] = ξi .

Although the discussion in this section has focused on the
discrete case, a similar argument works in the continuous
case, see [36], Section 2.

4.1.1 Mean and variance of sample means under the
perturbation model. For simplicity, we consider first the
sample mean. Conditionally on ξ , the data is drawn i.i.d.
from P ξ and we denote the marginal distribution when
averaging over the random variables ξi (i = 1, . . . , |D|)
by

dPmarginal(d) =
∫

dP ξ1,...,ξ|D|(d)dP(ξ1, . . . , ξ|D|).

For any function f (·), the marginal expectation of the
sample mean, averaging over both sampling and distri-
butional uncertainty, is

(9) Emarginal

[
1

n

n∑
i=1

f (Di)

]
= EP

[
f (D)

]
and the marginal variance of the sample mean is

(10) Varmarginal

(
1

n

n∑
i=1

f (Di)

)
= δ2

n
VarP

(
f (D)

)
,
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where the scaling factor δ2 satisfies

(11)
δ2

n
= 1

n︸︷︷︸
due to sampling

+ Var(ξ1)
n − 1

n

|D|2
|D| − 1︸ ︷︷ ︸

due to distributional perturbation

.

Note that we write for simplicity the subindex “marginal”
instead of Pmarginal. Under regularity assumptions [36],
Section 2, one can show

(12)

1

n

n∑
i=1

f (Di) −EP

[
f (D)

]

≈ N
(

0,
δ2

n
VarP

(
f (D)

))
.

Let us give some intuition on how to interpret dif-
ferent values of δ. By equation (11), δ2 ≥ 1. If δ = 1,
then Var(ξi) = 0 and thus there is no distributional per-
turbation, that is the data is drawn i.i.d. from P ξ = P .
As δ increases, the f (Di) become increasingly corre-
lated marginally. The variance Var(ξ1) is maximized for
ξi ∈ {0,1} for all i. In this case, Var(ξ1) = 1

|D| − 1
|D|2 . Us-

ing equation (11) in this most extreme case, we get δ2 = n.
Overall, we have the bound

1 ≤ δ2 ≤ n.

4.1.2 A numerical example. The R package calinf
(github.com/rothenhaeusler/calinf) contains functions to
generate data from perturbed distributions. Sampling
from the distributional perturbation model is slightly more
involved than drawing i.i.d. random variables, since we
have to choose the strength of the perturbation. We set the
state of the distributional perturbation by setting a distri-
butional seed via distributional_seed. This step
is not optional. On a high level, the distributional seed
indicates to the random number generator which obser-
vations are drawn from the same perturbed distribution,
allowing the random number generator to introduce spu-
rious associations between the variables. Once the distri-
butional seed is set, one can use this to generate perturbed
data as follows:

The displayed code generates 1000 observations from P ξ ,
where P ξ is a perturbed two-dimensional standard Gaus-
sian distribution. The perturbed data is generated such
that equation (10) holds approximately for any square-
integrable f (D). For continuous random variables, one
cannot directly use the strategy described in Section 4.1.
Details on how to sample from perturbed continuous dis-
tributions can be found in [36], Section 2. The function
drnorm generates i.i.d. data from a perturbed Gaussian.

FIG. 2. Random number generation from the distributional pertur-
bation model. On the upper left, the observations are drawn i.i.d.
from the uniform distribution. On the upper right, the observations are
drawn from a perturbed uniform distribution. On the bottom left, the
observations are drawn from the standard Gaussian distribution. On
the lower right, the observations are drawn from the perturbed Gaus-
sian distribution. In each case, the sample size is n = 1000. For the
distributional perturbations we use δ = 5.

Analogously, we provide functions to sample from a per-
turbed binomial distribution (drbinom), perturbed uni-
form distribution (drunif), etc. Here, the “dr” in drunif
stands for “distributional randomness”. An example is
shown in Figure 2.

4.2 Estimation Under the Distributional Perturbation
Model

In this section, we describe how to do estimation and in-
ference in the distributional perturbation model from Sec-
tion 4.1.

In a nutshell, as the expectation of sample means is un-
changed, estimation under the distributional perturbation
model can proceed “as usual”: irrespective of the value
of δ, one can construct point estimators such as moment-
based or maximum-likelihood estimators as if the data
were drawn i.i.d. from the target distribution P .

As an example, let us focus on the OLS parameter
θ(P ) = arg minEP [(Y − Xθ)2]. If θ(P ) is unique, it can
be rewritten as

θ(P ) = EP

[
XᵀX

]−1
EP

[
XᵀY

]
.

Assume that Di = (Xi, Yi), i = 1, . . . , n are drawn i.i.d.
from P ξ . Due to equation (9), marginally across the sam-
pling and distributional perturbation, we have

Emarginal

[
1

n

n∑
i=1

X
ᵀ
i Xi

]
= EP

[
XᵀX

]
and

Emarginal

[
1

n

n∑
i=1

X
ᵀ
i Yi

]
= EP

[
XᵀY

]
.

http://github.com/rothenhaeusler/calinf
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This motivates the estimator

θ̂ =
(

1

n

n∑
i=1

X
ᵀ
i Xi

)−1(
1

n

n∑
i=1

X
ᵀ
i Yi

)
,

which is the usual OLS estimator that we would use if
the data (Xi, Yi)i were drawn i.i.d. from P . Similar ideas
can be applied to maximum likelihood estimation and the
method of moments to show that estimation can proceed
“as usual” [36].

On the other hand, as we will discuss below, the vari-
ance of the resulting estimator depends on the (usually
unknown) δ. Under the usual and additional minor as-
sumptions, such estimators are asymptotically linear and
Gaussian under the distributional perturbation model [36].
For the example with OLS regression, a Taylor expansion
shows that

(13)

θ̂ − θ(P ) = 1

n

n∑
i=1

EP

[
XᵀX

]−1
X

ᵀ
i

(
Yi − Xiθ(P )

)︸ ︷︷ ︸
φP (Di)

+ oPmarginal

(
δ√
n

)
.

Thus, up to lower order terms, the difference between the
estimator and the target parameter (computed on the un-
perturbed distribution) is a mean of a function of the data.
This is similar to classical expansions in terms of the in-
fluence function [65]. The main difference is that the ex-
pansion is done in a non-i.i.d. setup that accounts for both
sampling uncertainty and distributional uncertainty. Since
the estimator is asymptotically linear, we can apply equa-
tion (12) to equation (13). Thus, under regularity assump-
tions [36], one obtains

θ̂ − θ(P ) ≈ N
(

0,
δ2

n
VarP

(
φP (D)

))
,

where the distributional approximation is meant to hold
w.r.t. Pmarginal on the left-hand side. In the following, we
will see that standard approaches will fail at estimating
the correct variance of θ̂ .

4.2.1 Classical statistical inference may drastically un-
derestimate uncertainty. In the model above, one might
be tempted to estimate the variance of statistical quanti-
ties as usual. Let’s consider the example of the sample
mean D = 1

n

∑n
i=1 Di . In the following, we will see that

it is straightforward to estimate VarP (D), but that estima-
tion of Varmarginal(D) is more challenging.

Estimation of VarP (D). If the data were drawn i.i.d.
from the target distribution P , one would use the variance
estimator σ̂ 2, where σ̂ 2 is the empirical variance

σ̂ 2 = 1

n

n∑
i=1

(
Di − 1

n

n∑
j=1

Dj

)2

= 1

n

n∑
i=1

D2
i −

(
1

n

n∑
i=1

Di

)2

.

Let us now investigate the variance estimator σ̂ 2. We will
see that Emarginal[σ̂ 2] is close to VarP (D). By equation
(9), the marginal expectation of 1

n

∑
i D

2
i is EP [D2]. Sim-

ilarly, the marginal expectation of D is EP [D]. Using
equation (10), the variance of D is δ2 VarP (D)/n. Thus,
the empirical variance estimate will have expected value

Emarginal
[
σ̂ 2]

= EP

[
D2] −

(
EP [D]2 + δ2

n
VarP (D)

)

=
(

1 − δ2

n

)
VarP (D).

Thus, if δ2 is small or n is large, then Emarginal[σ̂ 2] is close
to VarP (D); that is the difference is negligible.

This effect can also be easily observed empirically,
here illustrated with some commands in R. In the follow-
ing, we draw n = 1000 observations in a distributional
perturbation model with δ = 2. The estimated variance
is relatively close to the variance VarP (D) = 1, where
P = N (0,1).

This is good news. However, there are also some bad
news. To construct confidence intervals for EP [D], we
need an estimator of the variance of D = 1

n

∑n
i=1 Di .

Naive estimation of Varmarginal(D). As we will see in
the following, the naive estimator σ̂ 2

naive = 1
n
σ̂ 2 systemat-

ically underestimates the variance of D, potentially dras-
tically so. Intuitively, this is the case because the data
points Di are positively correlated under Pmarginal, with
unknown correlation. Let us compute the expectation

Emarginal
[
σ̂ 2

naive
] = 1

n

(
1 − δ2

n

)
VarP (D)

<
δ2

n
VarP (D) equation (11)

= Varmarginal(D) equation (10).

Thus, σ̂ 2
naive systematically underestimates Varmarginal(D).

As discussed before, in the most extreme case δ2 = n

which would make the left-hand side equal to zero. We
can also see this effect empirically, illustrated in R below.
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The naive estimator, computed on the previous example,
is

On the other hand, the actual variance of D, marginally
across both the distributional perturbation and the sam-
pling process is

Thus, the naive estimator σ̂ 2
naive underestimates the vari-

ance roughly by a factor of 4 which is to be expected since
δ2 = 4.

Summarizing the discussion in this section, estimation
of σ 2 = VarP (D) can be done as usual, while estimation
of Varmarginal(D) is more difficult. To be more specific,
one can use the empirical variance of (Di)i=1,...,n to esti-
mate σ 2 = VarP (D). In the more general case of asymp-
totically linear estimators, one can estimate the variance
VarP (φP (D)) by computing the empirical variance of
(φ̂(Di))i=1,...,n, where φ̂ is a plug-in estimate of the in-
fluence function [36]. Let us now turn to estimation of
Varmarginal(D). Since

Varmarginal(D) = δ2

n
VarP (D),

the main challenge is to estimate δ. In the following two
sections, we will discuss two approaches to estimate δ.

4.2.2 Calibration of uncertainty using triangulation.
In this section, we discuss how a commonly recom-
mended research strategy, called “method triangulation”
can be used to estimate distributional uncertainty.

If several estimators of an effect are available, one can
use variation of the estimators as a measure of robust-
ness. In the statistics literature, this type of stability anal-
ysis has been advocated by Yu and Kumbier [70] as part
of the predictability, computability, and stability (PCS)
framework. More generally speaking, investigating stabil-
ity across methods is often referred to as method triangu-
lation [16, 50, 47]. Triangulation is conceptually differ-
ent from replicability across settings. For example, if the
same study is conducted multiple times at different loca-
tions, these studies may share similar biases and thus may
be consistently incorrect. On the other hand, if different
methodologies yield similar conclusions, then the result is
less likely to be an artifact. These intuitive arguments can

be made precise in the distributional uncertainty frame-
work.

Assume we have access to several estimators θ̂1, . . . , θ̂K

for the same parameter of interest θ(P ). Examples from
causal inference include settings where we have:

• multiple instruments,
• multiple adjustment sets, or
• treatment effect homogeneity.

For example, in presence of treatment effect homogene-
ity, we can estimate average treatment effects on vari-
ous subpopulations. If there were no distributional uncer-
tainty across the subpopulations, these estimators should
agree, at least asymptotically. On the other hand, if there
is a lot of distributional uncertainty, these estimators will
be very far apart from each other. Thus, we can use the
observed variation between estimators as an indication
of how much distributional uncertainty is present for the
problem at hand. In the following, we will make this more
precise.

We assume that the estimators are asymptotically linear,
that is,

θ̂k − θk(P ) = 1

n

n∑
i=1

φk(Di) + oPmarginal

(
δ√
n

)
,

for some mean-zero functions φk , that is EP [φk(D)] = 0.
For the example of ordinary least squares estimation, see
also equation (13). This is also justified for maximum
likelihood estimators and empirical risk minimization in
low-dimensional settings, see [36]. For simplicity, in the
following we will assume that θk(P ) = θ�(P ) for all k, �.
This corresponds to the assumption that if no uncertainty
were present (infinite data from the target distribution),
all estimators would return the same target quantity. One
might have reasons to doubt this assumption. If this as-
sumption holds, the inferential procedure described below
will have exact coverage asymptotically. If it is violated,
one will generally have overcoverage [36].

Now let us proceed with the estimation of δ. The vari-
ation between the different estimation strategies is a mea-
sure of the trustworthiness of the result. Considering the
squared difference of the estimators yields

(14)

n(θ̂k − θ̂�)
2

= n

(
1

n

n∑
i=1

φk(Di) − φ�(Di)

)2

+ oPmarginal

(
δ2)

≈ δ2 VarP
(
φk(D) − φ�(D)

)
χ2

1 .

Here, we used equation (12). Thus, we can form an esti-
mate of δ by setting

(15) δ̂2 = 1

K(K − 1)

∑
k �=�

n(θ̂k − θ̂�)
2

V̂arP (φk(D) − φ�(D))
.
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One can then use this estimate in conjunction with
equation (12) to form 95%-confidence intervals:

(16) θ̂ ± 1.96
δ̂σ̂√

n
.

Here, σ̂ 2 is the usual variance estimate one would use
if the data were drawn i.i.d. from the target distribution.
More specifically, one can estimate the influence function
φ of θ̂ and use plug-in estimate of the variance

(17) σ̂ 2 = 1

n − 1

n∑
i=1

(
φ̂(Di) − 1

n

n∑
j=1

φ̂(Di)

)2

.

Under regularity assumptions and for large K , this in-
terval is valid in an asymptotic sense [36]:

(18) Pmarginal

[∣∣θ(P ) − θ̂
∣∣ ≤ z1−α/2

δ̂σ̂√
n

]
→ 1 − α,

where z1−α/2 is the 1 − α/2-quantile of a standard
Gaussian random variable. If K is small, then equation
(14) suggests replacing z1−α/2 with quantiles of a t-
distribution with appropriate degrees of freedom [36]. The
main takeaway here is that we give coverage guarantees
for the unperturbed parameter θ(P ), as opposed to the
perturbed parameter θ(P ξ ). Furthermore, these guaran-
tees hold marginally, that means across multiple draws of
both the distributional and sampling uncertainty.

An important aspect that we have glossed over until
now is that for this procedure to work the estimators θ̂k

have to be sufficiently different. As an extreme example,
one cannot use θ̂1 = θ̂2 = · · · = θ̂K . With “sufficiently dif-
ferent” we mean that the influence functions of the esti-
mators have to be different. This is reflected in equation
(15). If the influence functions are very similar, the de-
nominator in (15) goes to zero and the procedure becomes
increasingly unstable. More details can be found in [36].

One important takeaway from this methodology is that
it is not the absolute stability (empirical variation of the
estimators) that matters, but relative stability. In equation
(15), we divide the variation (θ̂k − θ̂�)

2 by the expected
variation under i.i.d. sampling 1

n
V̂arP (φk(D)−φ�(D)). If

the actual variation is larger than the expected variation
under i.i.d. sampling, we have some indication that there
is distributional uncertainty.

4.2.3 Calibration of uncertainty using knowledge
about the superpopulation. Knowledge about the super-
population can be leveraged to estimate δ. As an example,
the data scientist might know the average age or average
income of the target population. Such knowledge can be
expressed as moment equations. If the empirical average
age is far from the target population average age, then this
is an indication that either distribution or sampling uncer-
tainty is high. Thus, we can use such knowledge to con-
struct an estimator of δ. Let us now formalize this idea.

As an example, assume that we know

μ = EP [X],

where μ ∈ R
K . In this case, using equation (10), for

any fixed k we can construct an unbiased estimate of
δ2 VarP (X):

n(X•k − μk)
2.

Similarly, for each k we can construct an estimator of δ2

by setting

δ̂2
k = n(X•k − μk)

2

1
n−1

∑n
i=1(Xik − X•k)2

Note that this is the squared t-test statistic. Even for n →
∞, the variance of δ̂2

k does not go to zero. Under the non-
i.i.d. sampling model, using equation (12), δ̂2

k/δ
2 follows

a χ2
1 -distribution asymptotically. Precision can be gained

by averaging

δ̂2 = 1

K

K∑
k=1

δ̂2
k .

This estimate of δ can then be used to construct confi-
dence intervals as described in equation (16). Under ap-
propriate regularity assumptions, δ̂ → δ. Thus, this ap-
proach will yield asymptotic coverage guarantees as in
equation (18), see [36].

4.3 Calibrated Inference in R

In the following, we describe some functions avail-
able in the R-package available on GitHub (github.com/
rothenhaeusler/calinf) that allow to quantify both sam-
pling and distributional uncertainty. At the center is the
approach described in Section 4.2.2. As an example, let
us consider the problem of estimating the causal effect
of some binary treatment Tr ∈ {0,1} on some outcome
Y via linear regression, in the presence of some covari-
ates X1, . . . ,X5. The practitioner might have several rea-
sonable choices for confounder adjustment. Examples of
variables that can (but are not necessarily included) in re-
gression adjustment are exogeneous variables that affect
the outcome, but not the treatment. Similarly, instrumen-
tal variables affect the treatment but are assumed to have
no direct effect on the outcome. For valid treatment effect
estimation, such adjustment variables can be (but do not
have to be) included in a regression. These choices can be
specified in a list of formulas:

http://github.com/rothenhaeusler/calinf
http://github.com/rothenhaeusler/calinf
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In a second step, one can then run a calibrated linear re-
gression:

Let us consider a concrete numerical example. We are
interested in estimating the causal effect of a binary treat-
ment variable Tr on Y in a structural causal model [51,
55]. Let P be the distribution of (Tr, I1,X1,X2, J1, J2, Y )

which is generated as follows:

X1 = ε1,

X2 = X1 + ε2,

I1 = ε3,

J1 = ε4,

J2 = J1 + ε5,

Tr = X1 + X2 + I1 + ε6,

Y = Tr + X1 − X2 + J1 + J2 + ε7.

Here, ε ∼ N (0, Id7). In words, I1 is an instrument and
(J1, J2) are variables that affect Y but not the treat-
ment. We are interested in the direct causal effect of Tr
on Y , which in this setting can be written as θ(P ) =
arg minθ minβ EP [(Y − Tr · θ − Zβ)2] for some appropri-
ate set of adjustment variables Z. In this setting, there are
multiple valid estimation strategies for θ(P ). More pre-
cisely, all of the following formulas are valid in the sense
that if one had infinite data from P , regression adjustment
via these formulas would yield a consistent estimator of
θ(P ):

We sample n = 100 observations from the random per-
turbation model with δ = 2. The value δ is not known to

the data scientist and thus has to be estimated. Running
calibrated linear regression yields the following output:

As we can see, the estimated scaling factor δ̂ is some-
what close to δ = 2. Estimation of δ is somewhat unstable
across draws from the perturbation model. This is due to
the fact that estimation of δ̂ has nonnegligible variance
even for n → ∞ (see equation (14)). Precision of δ̂ can
be improved by adding additional estimators or moment
constraints. From a statistical perspective, it is pertinent to
investigate the validity of p-values across both sampling
uncertainty and distributional uncertainty. To investigate
the validity of p-values, we set the direct causal effect in
the structural equation model to zero, that is, we set

Y = X1 − X2 + J1 + J2 + ε7.

We then compute naive p-values as reported by

and also compute calibrated p-values via

We repeat the two-stage sampling and estimation proce-
dure N = 1000 times. The histograms of p-values are de-
picted in Figure 3.

FIG. 3. Example from Section 4.3. On the left-hand side, we show
the histogram of N = 1000 naive p-values as reported by lm(). On
the right-hand side, the p-values are computed via calm(), that is,
the p-values are calibrated. The null hypothesis θ(P ) = 0 is true. As
expected, the naive p-values are not valid for this hypothesis. In fact,
more than 40% of the naive p-values are smaller than 0.1. While not
perfect, the distribution of the adjusted p-values is much closer to a
uniform distribution.
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The naive p-values are not valid for the hypothesis
θ(P ) = 0, due to the distributional uncertainty. If there
were no distributional uncertainty, the naive p-values
would be valid. Intuitively speaking, the naive p-values
are based on a variance formula that drastically underes-
timates uncertainty for the parameter θ(P ). Thus, these
p-values are anticonservative. The p-values as reported
by calm, while not perfect, follow roughly a uniform dis-
tribution.

The R-package calinf provides functions also for
calibrating inference in generalized linear models. If the
outcome Y is binary, one can run calibrated logistic re-
gression:

The function caglm is a wrapper for glm. Thus, one can
run any generalized linear model by specifying an appro-
priate family in caglm.

Looking further, the proposed procedure in
Section 4.2.2 is not limited to calibrate uncertainty only
for generalized linear models. In principle, the proposed
approach can be used for any asymptotically linear esti-
mators. In the future, we aim to provide additional func-
tionality that extend beyond these simple use cases.

4.4 Uniqueness of the Distributional Uncertainty
Model

The discussion in the previous sections raises the ques-
tion whether there are other nonadversarial perturbation
models that would have led to different asymptotics. In
this section, we give a negative answer to this question,
within the assumed framework of a randomly perturbed
distribution P ξ .

In the following, for each realization of ξ let P ξ be a
probability measure on D. To be more specific, we as-
sume that P • is a random probability measure. As an ex-
ample, P ξ might be constructed via random re-weighting
with potentially nonexchangeable ξi ’s. In the following
we will assume that P ξ is “unbiased”, that is, that for
every measurable set A ⊆ D we have Eξ [P ξ [D ∈ A]] =
P [D ∈ A].

When considering distributional perturbation models,
arguably there are two assumptions that may seem nat-
ural. First, one would like to have that events with prob-
abilities close to zero are only perturbed very little (oth-
erwise, P ξ would be very different from P ). To be more
precise, we require that for every sequence of measurable
sets A1,A2, . . . ⊆ D with

P(D ∈ Aj) → 0 (j → ∞)

we have

(19) Varξ
(
P ξ (D ∈ Aj)

) → 0 (j → ∞).

In addition, we would like to exclude adversarial pertur-
bations that only change a distribution in a very specific
way. Mathematically, we model this by an isotropic per-
turbation, that means that events that have equal probabil-
ity, are perturbed similarly. This can be seen as a symme-
try assumption. To be specific, if P(D ∈ A) = P(D ∈ B)

then we assume that

(20) Varξ
(
P ξ (D ∈ A)

) = Varξ
(
P ξ (D ∈ B)

)
.

THEOREM 1 ([36], Th.2). Assume that (19) and (20)
holds. Furthermore, assume that there exists a measur-
able function u(D) such that u(D) ∼ Unif([0,1]), for
D ∼ P . Then, there exists δdist ≥ 0 such that for any
square-integrable function f (D) ∈ L2(P ),

Varξ
(
Eξ

[
f (D)

]) = δ2
dist VarP

(
f (D)

)
.

The implication of Theorem 1 is as follows. Assume
that conditionally on ξ , the data (Di)i=1,...,n is drawn i.i.d.
from the perturbed distribution P ξ . Then, for all square-
integrable functions f (D) ∈ L2(P ) we have

Varmarginal

(
1

n

n∑
i=1

f (Di)

)

=
(

1

n
+ δ2

dist −
δ2

dist

n

)
VarP

(
f (D)

)
.

Ignoring the lower-order term
δ2

dist
n

, we can combine un-
certainty due to sampling and uncertainty due to the dis-
tributional perturbation by setting

δ2 = 1 + nδ2
dist.

Then, for all square-integrable functions f (D) ∈ L2(P )

marginally across both sampling and distributional uncer-
tainty we have

Varmarginal

(
1

n

n∑
i=1

f (Di)

)
≈ δ2

n
VarP

(
f (D)

)
.

This corresponds to the perturbation model introduced in
equation (10).

5. APPLICATION

We apply calibrated inference to a Get-Out-The-Vote
field experiment, which investigates whether voter turnout
can be increased by social pressure [22]. We study two
groups: the “control” group and the “neighbors” group,
and we refer to the latter also as the treatment group.
The “neighbors” group received a mail with the statement
“DO YOUR CIVIC DUTY—VOTE!”. The letter lists the
voting record of neighbors and threatens to publicize who
does and does not vote. The outcome is voter turnout in
the August 2006 primary election in Michigan.

The treatment is applied on the household level. On
average, there are approximately 2 units per household.
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Since units within households are correlated, the data
should be analyzed using clustered standard errors. This
data generation process can also be seen as a random per-
turbation model, where units only appear in the dataset if
all other units in the household also appear in the dataset.
That is, the treatment group is observed from a distribu-
tion which is different from the idealized one with i.i.d.
sampling for which we want to infer the treatment effect.
We want to emulate a scenario where the data is not drawn
i.i.d. from the target distribution, with unknown correla-
tions between units. Thus, we drop the household indi-
cator, and hope to recover valid inferential statements by
calibrating the p-values.

Since the ground truth is unknown, we re-randomize the
treatment variable to simulate a setting where the treat-
ment effect is zero. The covariates and outcomes are left
unchanged.

In this setup, one expects the correlation within house-
hold units to inflate the variance compared to i.i.d. sam-
pling. In our scenario for illustration, as mentioned above,
the household indicator is considered unknown. Thus, we
have to infer the variance inflation factor δ from data
alone. To estimate δ, we use super-population constraints
as described in Section 4.2.3. To form these constraints,
we use that for each individual we have records whether
they voted in the primary elections in 2000, 2002, and
2004 or the general election in 2000 and 2002. For each
of these covariates, as super-population constraints we as-
sume that the covariance between treatment and covari-
ates is zero. Intuitively, if the empirical covariance be-
tween treatment and covariates is significantly different
from zero under an i.i.d. sampling, there is evidence of
positive associations between units.

There are n = 119,999 households in the dataset that
were subject to the treatment or control group. We ran-
domly select m = 1200 ≈ n/100 households and com-
pute calibrated p-values as well as naive p-values via
difference-in-means, assuming that the household identi-
fier is unknown. This process was repeated 10,000 times.
The resulting p-values are depicted in Figure 4. The cali-
brated p-values follow much closer a uniform distribution
(which is correct) than the naive p-values. Around 11% of
the naive p-values are below 0.05 while only 6.5% of the
calibrated p-values are below 0.05. This indicates that the
calibration procedure succeeded at capturing the excess
variation due to unobserved clustering.

6. DISCUSSION AND OUTLOOK

We summarize the main points of our exposition and
outline how the propagated ideas can potentially be ex-
tended to improve replicability and generalizability.

In many practical problems, the data is not drawn i.i.d.
from the target population. For example, unobserved sam-
pling bias, confounding, batch effects, or unknown asso-
ciations can inflate the deviation of the estimator from its

FIG. 4. Calibrated inference for the Get-Out-The-Vote field experi-
ment [22]. On the left-hand side, we show the histogram of N = 1000
naive p-values computed via difference-in-means. On the right-hand
side, the p-values are calibrated using super-population constraints.
The treatment has been re-randomized to guarantee that the null hy-
pothesis θ(P ) = 0 is true. Thus, the p-values should follow a uniform
distribution. As some of the units are positively correlated, the naive
p-values are not valid. Around 11% of the naive p-values are below
0.05 while only 6.5% of the adjusted p-values are below 0.05. The em-
pirical distribution of adjusted p-values is much closer to a uniform
distribution.

target compared to i.i.d. sampling. For reliable statistical
inference, it is of paramount importance to account for
these additional types of uncertainty. Failure to do so is a
major source of lack of replicability of scientific findings
in many fields.

We present two approaches to deal with such distribu-
tion shifts. In Section 3, we consider a directional notion
of distributional stability. In the existing literature, distri-
butional errors are often handled via worst-case bounds.
Such bounds can be very conservative and may lead to
rather limited information gain as some type of shifts
might be more realistic than others. The directional no-
tion of stability allows to probe different perturbations to
investigate what type of distribution shift the estimand is
most sensitive to. This then leads to a less conservative
notion of sensitivity and helps to judge which type of dis-
tribution shifts one should be most worried about.

In Section 4, we go beyond worst-case stability. All of
the worst-case bounds have in common that some back-
ground knowledge of the strength of shifts or confounding
is needed to form and interpret these bounds. In contrast,
we consider a model that shifts the distribution randomly.
This allows to consider average distributional robustness.
In addition, it turns out that in such a random perturba-
tion model, it is possible to estimate the size of perturba-
tions by using knowledge in form of moment equations.
Such background knowledge can come in the form of hav-
ing multiple valid estimators for a single target quantity.
Based on these estimators, it is possible to form “cal-
ibrated” confidence intervals that are valid on average,
where we average both over sampling uncertainty and the
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distributional perturbation. Procedures to sample from the
distributional perturbation model and conduct calibrated
inference are implemented in the R-package calinf avail-
able at github.com/rothenhaeusler/calinf.

Looking ahead, there are multiple directions that we be-
lieve are promising avenues for future research.

When having access to multiple datasets or multisource
data, we can model the different datasets arising from per-
turbed data generating distributions. In such a context, we
point to the following.

Transfer learning under random shifts. In the literature,
one often makes a covariate shift assumption, that is, that
the conditional distribution of a target Y given a subset
of observed attributes stays the same. The distributional
perturbation model from Section 4 allows to go beyond
this assumption, by allowing for (non)-adversarial shifts
even in conditional distributions. We can then formalize
optimal transfer learning under random perturbations.

Data fusion across heterogeneous datasets. We can
model the differences between multiple datasets as ran-
dom, as in Section 4. This may lead to straightforward ex-
tensions of statistical methodology and optimality results
(such as the Cramér-Rao lower bound or semiparametric
efficiency bounds) to distributional counterparts.

Multiple testing in the context of distribution shifts. It is
well known how to account for multiple testing in the con-
text of sampling uncertainty. Similar issues are at play un-
der multiple distributional perturbations: if we have 100
studies for which the null hypothesis holds but in each of
those studies we sample from a randomly perturbed dis-
tribution P ′ �= Ptarget, it is quite likely that we will get too
many false positives since some of the distributions will
be strongly perturbed. The more perturbed distributions
we look at, the more likely it is that we’ll make a false
discovery. This suggests that we should account for mul-
tiple testing also in distributional stability measures.

Without relying on multiple data sources, we also men-
tion the following.

Nonadversarial confounding. Sensitivity analysis in
causal inference investigates the stability of a causal con-
clusion by taking the worst-case confounded distribution
given some restrictions on the strength of confounding.
Such bounds are often very conservative. A less pes-
simistic assumption would be to model unobserved con-
founding as random (nonadversarial). A random con-
founding model, perhaps similar to the one in Section 4,
potentially opens the door for novel average sensitivity
procedures for causal inference.
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