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Abstract

Assigning significance in high-dimensional regression is challenging. Most computationally
efficient selection algorithms cannot guard against inclusion of noise variables. Asymptotically
valid p-values are not available. An exception is a recent proposal by Wasserman and Roeder
(2008) which splits the data into two parts. The number of variables is then reduced to a
manageable size using the first split, while classical variable selection techniques can be applied
to the remaining variables, using the data from the second split. This yields asymptotic error
control under minimal conditions. It involves, however, a one-time random split of the data.
Results are sensitive to this arbitrary choice: it amounts to a “p-value lottery” and makes
it difficult to reproduce results. Here, we show that inference across multiple random splits
can be aggregated, while keeping asymptotic control over the inclusion of noise variables. In
addition, the proposed aggregation is shown to improve power, while reducing the number of
falsely selected variables substantially.

Keywords: High-dimensional variable selection, data splitting, multiple comparisons.

1 Introduction

The problem of high-dimensional variable selection has received tremendous attention in the last
decade. Sparse estimators like the Lasso (Tibshirani, 1996) and extensions thereof (Zou, 2006;
Meinshausen, 2007) have been shown to be very powerful because they are suitable for high-
dimensional data sets and because they lead to sparse, interpretable results.

In the usual work-flow for high-dimensional variable selection problems, the user sets potential
tuning parameters to their prediction optimal values and uses the resulting estimator as the final
result. In the classical low-dimensional setup, some error control based on p-values is a widely used
standard in all areas of sciences. So far, p-values were not available in high-dimensional situations,
except for the proposal of Wasserman and Roeder (2008). An ad-hoc solution for assigning relevance
∗These authors contributed equally to this work
†Department of Statistics, University of Oxford, UK
‡Seminar für Statistik, ETH Zurich, Switzerland

1



is to use the bootstrap to analyze the stability of the selected predictors and to focus on those
which are selected most often (or even always). Bach (2008) shows for the Lasso that this leads to
a consistent model selection procedure under fewer restrictions than for the non-bootstrap case.

More recently, some progress has been achieved to obtain error control (Wasserman and Roeder,
2008; Meinshausen and Bühlmann, 2008). Here, we build upon the approach of Wasserman and
Roeder (2008) and show that an extension of their ‘screen and clean’ algorithm leads to a more pow-
erful variable selection procedure. Moreover, desired error rates can be controlled, while Wasserman
and Roeder (2008) focus on variable selection rather than assigning significance via p-values.

This article is organized as follows. We discuss the single-split method of Wasserman and Roeder
(2008) briefly in Section 2, showing that results can strongly depend on the arbitrary choice of a
random sample splitting. We propose a multi-split method, removing this dependence. In Section
3 we prove error control of the multi-split method under identical conditions as in Wasserman
and Roeder (2008), and we show in Section 4 numerically for simulated and real datasets that the
method is more powerful than the single-split version while reducing substantially the number of
false discoveries. Some possible extensions of the proposed methodology are outlined in Section 5.

2 Sample Splitting and High-Dimensional Variable Selection

We consider the usual high-dimensional linear regression setup with a response vector Y = (Y1, . . . , Yn)
and an n× p fixed design matrix X such that

Y = Xβ + ε,

where ε = (ε1, . . . εn) is a random error vector with εi iid. N (0, σ2) and β ∈ Rp is the parameter
vector. Extensions to other models are outlined in Section 5.

Denote by
S = {j; βj 6= 0}

the set of active predictors and similarly by N = Sc = {j; βj = 0} the set of noise variables. Our
goal is to assign p-values for the null-hypotheses H0,j : βj = 0 versus HA,j : βj 6= 0 and to infer the
set S from a set of n observations (Xi, Yi), i = 1, . . . , n. We allow for potentially high-dimensional
designs, i.e. p � n. This makes statistical inference very challenging. An approach proposed by
Wasserman and Roeder (2008) is to split the data into two parts, reducing the dimensionality of
predictors on one part to a manageable size of predictors (keeping the important variables with
high probability), and then to assign p-values and making a final selection on the second part of
the data, using classical least squares estimation.
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2.1 The Single-Split Method

The procedure of Wasserman and Roeder (2008) relies on sample-splitting, performing variable
selection and dimensionality reduction on one part of the data and classical significance testing
on the remaining part. The data are splitted randomly into two disjoint groups Din = (Xin, Yin)
and Dout = (Xout, Yout) of equal size. Let S̃ be a variable selection or screening procedure which
estimates the set of active predictors. Abusing notation slightly, we also denote by S̃ the set of
selected predictors. Then variable selection and dimensionality reduction is based on Din, i.e. we
apply S̃ only on Din. This includes the selection of potential tuning parameters involved in S̃. The
idea is to break down the large number p of potential predictor variables to a smaller number k � p

with k at most a fraction of n while keeping all relevant variables. The regression coefficients and
the corresponding p-values P̃1, . . . , P̃p of the selected predictors are determined based on Dout by
using ordinary least squares estimation on the set S̃ and setting P̃j = 1 for all j /∈ S̃. If the selected
model S̃ contains the true model S, i.e. S̃ ⊇ S, the p-values based on Dout are unbiased. Finally,
each p-value P̃j is adjusted by a factor |S̃| to correct for the multiplicity of the testing problem.

The selected model is given by all variables in S̃ for which the adjusted p-value is below a cutoff
α ∈ (0, 1),

Ŝsingle =
{
j ∈ S̃ : P̃j |S̃| ≤ α

}
.

Under suitable assumptions discussed later, this yields asymptotic control against inclusion of
variables in N (false positives) in the sense that

lim sup
n→∞

P
[
|N ∩ Ŝsingle| ≥ 1

]
≤ α,

i.e. control of the family-wise error rate. The method is easy to implement and yields the asymptotic
control under weak assumptions. The single-split method relies, however, on an arbitrary split into
Din and Dout. Results can change drastically if this split is chosen differently. This in itself is
unsatisfactory since results are not reproducible.

2.2 The New Multi-Split Method

An obvious alternative to a single arbitrary split is to divide the sample repeatedly. For each split
we end up with a set of p-values. It is not obvious, though, how to combine and aggregate the
results. Here, we give a possible answer. We will later show empirically that, maybe unsurprisingly,
the resulting procedure is more powerful than the single-split method. The multi-split method also
makes results reproducible, at least approximately if the number of random splits is chosen to be
very large.

The multi-split method uses the following procedure:

For b = 1, . . . , B:
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1. Randomly split the original data into two disjoint groups D(b)
in and D

(b)
out of equal size.

2. Using only D(b)
in , estimate the set of active predictors S̃(b).

3. (a) Using onlyD(b)
out, fit the selected variables in S̃(b) with ordinary least squares and calculate

the corresponding p-values P̃ (b)
j for j ∈ S̃(b).

(b) Set the remaining p-values to 1, i.e.

P̃
(b)
j = 1, j /∈ S̃(b).

4. Define the adjusted (non-aggregated) p-values as

P
(b)
j = min

(
P̃

(b)
j |S̃

(b)|, 1
)
, j = 1, . . . , p (2.1)

Finally, aggregate over the B p-values P (b)
j , as discussed below.

The procedure leads to a total of B p-values for each predictor j = 1, . . . , p. It will turn out that
suitable summary statistics are quantiles. For γ ∈ (0, 1) define

Qj(γ) = qγ

(
{P (b)

j /γ; b = 1, . . . , B}
)
, (2.2)

where qγ(·) is the (empirical) γ-quantile function.

A p-value for each predictor j = 1, . . . , p is then given by Qj(γ), for any fixed 0 < γ < 1. We
will show in Section 3 that this is an asymptotically correct p-value, adjusted for multiplicity. A
typical choice for γ would be to use the median, i.e. γ = 0.5. The value Qj(0.5) corresponds to
twice the median value among P (b)

j , b = 1, . . . , B. As we will see later, the choice γ = 0.5 can be
too restrictive. A proper selection of γ may be difficult. Error control is not guaranteed anymore
if we search for the best value of γ.

We propose to use instead an adaptive version which selects a suitable value of the quantile based
on the data. Let γmin ∈ (0, 1) be a lower bound for γ, typically 0.05, and define

Pj =
(
1− log γmin

)
inf

γ∈(γmin,1)
Qj(γ). (2.3)

The extra correction factor 1− log γmin ensures that the family-wise error rate remains controlled
at level α despite of the adaptive search for the best quantile, see Section 3. For the recommended
choice of γmin = 0.05, this factor is upper bounded by 4; in fact, 1− log(0.05) ≈ 3.996. The selected
subset consists now of all variables whose p-value is below a specified significance level α ∈ (0, 1),

Ŝmulti = {j ∈ S̃ : Pj ≤ α}.

Figure 1 shows an example. The left panel contains the histogram of the adjusted p-values P (b)
j

for b = 1, . . . , B of the selected variable in the real data example in Section 4.2. The single split
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Figure 1: Left: a histogram of adjusted p-values P (b)
j for the selected variable in the motif regression

data example of Section 4.2. The single split method picks randomly one of these p-values (a
“p-value lottery”) and rejects if it is below α. For the multi-split method, we reject if and only
if the empirical distribution function of the adjusted p-values crosses the broken line (which is
f(p) = max{0.05, (3.996/α)p}) for some p ∈ (0, 1). This bound is shown as a broken line for
α = 0.05. For the given example, the bound is indeed exceeded and the variable is thus selected.

method is equivalent to picking one of these p-values randomly and selecting the variable if this
randomly picked p-value is sufficiently small. To avoid this “p-value lottery”, the multi-split method
computes the empirical distribution of all p-values P (b)

j for b = 1, . . . , B and rejects if the empirical
distribution crosses the broken line in the right panel of Figure 1. A short derivation of the latter
is as follows. Variable j is selected if and only if Pj ≤ α, which happens if and only if there exists
some γ ∈ (0.05, 1) such that Qj(γ) ≤ α/(1 − log 0.05) ≈ α/3.996. Equivalently, using definition
(2.2), the γ-quantile of the adjusted p-values, qγ(P (b)

j ), has to be smaller than or equal to αγ/3.996.

This in turn is equivalent to the event that the empirical distribution of the adjusted p-values P (b)
j

for b = 1, . . . , B is crossing above the bound f(p) = max{0.05, (3.996/α)p} for some p ∈ (0, 1).
This bound is shown as a broken line in the right panel of Figure 1.

Besides better reproducibility and asymptotic family-wise error control, the multi-split version
is, maybe unsurprisingly, more powerful than the single-split selection method. Before showing
numerical evidence, we show that the proposed method provides indeed the desired error control.
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3 Error Control and Consistency

3.1 Assumptions

To achieve asymptotic error control, a few assumptions are made in Wasserman and Roeder (2008)
regarding the crucial requirements for the variable selection procedure S̃.

(A1) Screening property : limn→∞ P
[
S̃ ⊇ S

]
= 1.

(A2) Sparsity property: |S̃| < n/2.

The Screening property (A1) ensures that all relevant variables are retained. Irrelevant noise vari-
ables are allowed to be selected, too, as long as there are not too many as required by the Sparsity
property (A2). A violation of the sparsity property would make it impossible to apply classical
tests on the retained variables.

The Lasso (Tibshirani, 1996) is an important example which satisfies (A1) and (A2) under appro-
priate conditions discussed in Meinshausen and Bühlmann (2006), Zhao and Yu (2006), van de Geer
(2008) and Bickel et al. (2008). The adaptive Lasso (Zou, 2006; Zhang and Huang, 2008) satisfies
(A1) and (A2) as well under suitable conditions. Other examples include, assuming appropriate
conditions, L2 Boosting (Friedman, 2001; Bühlmann, 2006), orthogonal matching pursuit (Tropp
and Gilbert, 2007) or sure independence screening (Fan and Lv, 2008).

We will typically use the Lasso (and extensions thereof) as screening method. Other algorithms
would be possible. Wasserman and Roeder (2008) studied various scenarios under which these two
properties are satisfied for the Lasso, depending on the choice of the regularization parameter. We
refrain from repeating these and similar arguments, just working on the assumption that we have a
selection procedure S̃ at hand which satisfies both the Screening property and the Sparsity property.

3.2 Error Control

We proposed two versions for multiplicity-adjusted p-values. One is Qj(γ) as defined in (2.2) which
relies on a choice of γ ∈ (0, 1). The second is the adaptive version Pj defined in (2.3) which makes
an adaptive choice of γ. We show that both quantities are multiplicity-adjusted p-values providing
asymptotic error control.

Theorem 3.1. Assume (A1) and (A2). Let α, γ ∈ (0, 1). If the null-hypothesis H0,j : βj = 0 gets
rejected whenever Qj(γ) ≤ α, the family-wise error rate is asymptotically controlled at level α, i.e.

lim sup
n→∞

P
[

min
j∈N

Qj(γ) ≤ α
]
≤ α,

where P is with respect to the data sample and the statement holds for any of the B random sample
splits.
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Theorem 3.1 is valid for any pre-defined value of the quantile γ. However, the adjusted p-values
Qj(γ) involve the somehow arbitrary choice of γ which might pose a problem for practical appli-
cations. We therefore proposed the adjusted p-values Pj which search for the optimal value of γ
adaptively.

Theorem 3.2. Assume (A1) and (A2). Let α ∈ (0, 1). If the null-hypothesis H0,j : βj = 0 gets
rejected whenever Pj ≤ α, the family-wise error rate is asymptotically controlled at level α, i.e.

lim sup
n→∞

P
[

min
j∈N

Pj ≤ α
]
≤ α,

where the probability P is as in Theorem 3.1.

We comment briefly on the relation between the proposed adjustment to false discovery rate (Ben-
jamini and Hochberg, 1995; Benjamini and Yekutieli, 2001) or family-wise error (Holm, 1979)
controlling procedures. While we provide a family-wise error control and as such use union bound
corrections as in Holm (1979), the definition of the adjusted p-values (2.3) and its graphical rep-
resentation in Figure 1 are vaguely reminiscent of the false discovery rate procedure, rejecting
hypotheses if and only if the empirical distribution of p-values crosses a certain linear bound. The
empirical distribution in (2.3) is only taken for one predictor variable, though, which is either in S
or N . This would correspond to a multiple testing situation where we are testing a single hypothesis
with multiple statistics.

3.3 Model Selection Consistency

If we let level α = αn → 0 for n→∞, the probability of falsely including a noise variable vanishes
because of the preceding results. In order to get the property of consistent model selection, we have
to analyze the asymptotic behavior of the power. It turns out that this property is inherited from
the single-split method.

Corollary 3.1. Let Ŝsingle be the selected model of the single-split method. Assume that αn → 0
can be chosen for n → ∞ at a rate such that limn→∞ P[Ŝsingle = S] = 1. Then, for any γmin (see
(2.3)), the multi-split method is also model selection consistent for a suitable sequence αn, i.e. for
Ŝmulti = {j ∈ S̃;Pj ≤ αn} it holds that

lim
n→∞

P
[
Ŝmulti = S

]
= 1.

Wasserman and Roeder (2008) discuss conditions which ensure that limn→∞ P[Ŝsingle = S] = 1 for
various variable selection methods such as the Lasso or some forward variable selection scheme.

The reverse of the Corollary above is not necessarily true. The multi-split method can be consistent
if the single-split method is not. One could imagine for example a scenario, where the p-values of
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a variable j ∈ S satisfy for some c ∈ (0, 1) that lim supn→∞ P[P (b)
j ≤ c] < 1, where the probability

is with respect to both the data and the random split-point. In this case, the single-split method
cannot be consistent, as there is a positive probability of variable j ∈ S not being selected when
αn → 0. On the other hand, some quantiles of the distribution of P (b)

j under repeated random
split-point selection can converge to 0, which would make the multi-split method consistent even
though the single-split method is not. We refrain from going into more details here and rather show
with numerical results that the multi-split method is indeed more powerful than the single-split
analogue.

4 Numerical Results

In this section we compare the empirical performance of the different estimators on simulated and
real data sets. Simulated data allow a thorough evaluation of the model selection properties. The
real dataset shows that we can find signals in data with our proposed method that would not be
picked up by the single-split method. We use a default value of α = 0.05 everywhere.

4.1 Simulations

We use the following simulation settings:

(A) Simulated data set with n = 100, p = 100 and a design matrix coming from a centered
multivariate normal distribution with covariance structure Cov(Xj , Xk) = 0.5|j−k|

(B) As (A) but with n = 100 and p = 1000.

(C) Real data set with n = 71 and p = 4088 for the design matrix X and artificial response Y .

The data set in (C) is from gene expression measurements in Bacillus Subtilis. The p = 4088
predictor variables are log-transformed gene expressions and there is a response measuring the
logarithm of the production rate of riboflavin in Bacillus Subtilis. The data is kindly provided by
DSM (Switzerland). As the true variables are not known, we consider a linear model with design
matrix from real data and simulating a sparse parameter vector β as follows. In each simulation
run, a new parameter vector β is created by randomly setting |S| components of β to 1 and the
remaining p − |S| components to 0. Placing the active components at random creates a more
difficult problem than placing them in blocks (e.g. the first 10). Selecting a correlated predictor
usually leads to a false decision in the random component case but not necessarily if the active
components arise in blocks. The error variance σ2 is adjusted such that the signal to noise ratio
(SNR) is maintained at a desired level at each simulation run.

We compare the average number of true positives and the family-wise error rate (FWER) for the
single and multi-split methods for all three simulation settings (A)–(C) and vary in each the SNR to
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1, 4 and 16 and the number |S| of relevant variables between 5 and 10. As initial variable selection
or screening method S̃ we use three approaches, which are all based on the Lasso (Tibshirani, 1996).
The first one, denoted by S̃fixed, uses the Lasso and selects those bn/6c variables which appear most
often in the regularization path when varying the penalty parameter. The second method, denoted
by S̃cv, uses the Lasso with penalty parameter chosen by 10-fold cross-validation and selecting the
variables whose corresponding estimated regression coefficients are different from zero. The third
method, denoted by S̃adap is the adaptive Lasso of Zou (2006) where regularization parameters are
chosen based on 10-fold cross-validation with the Lasso solution used as initial estimator for the
adaptive Lasso. The selected variables are again the ones whose corresponding estimated regression
parameters are different from zero. We use a total of B = 50 sample-splits for each simulation run.

Results are shown in Figures 2 and 3 for both the single-split method and the multi-split method
with the default setting γmin = 0.05. Using the multi-split method, the average number of true
positives (the variables in S which are selected) is typically slightly increased while the FWER (the
probability of including variables in N) is reduced sharply. The single-split method has often a
FWER above the level α = 0.05 at which it is asymptotically controlled. For the multi-split method,
the FWER is above the nominal level only in one scenario, for data (C) with a high SNR and the
adaptive Lasso, and below α otherwise. The asymptotic control seems to give a good control in
finite sample settings with the multi-split method, yet not the single-split method. Even though the
multi-split method is more conservative than the single-split method (having substantially lower
FWER), the number of true discoveries is often increased. We note that for data (C), with p = 4088,
the number of true positives is low since we control the very stringent family-wise error criterion
at α = 0.05 significance level. As an alternative, controlling less conservative error measures would
be possible and is discussed in Section 5.

We also experimented with using the value of Qj(γ) directly as an adjusted p-value, without the
adaptive choice of γ but using a fixed value γ = 0.5 instead, i.e. looking at twice the median value
of all p-values across multiple data splits. The results were not as convincing as for the adaptive
choice and we recommend the adaptive version with γmin = 0.05 as a good default choice.

4.2 Real Data

We apply the multi-split method to a real data set about motif regression (Conlon et al., 2003).
For a total of n = 287 DNA segments we have the binding intensity of a protein to each of the
segments. These will be our response values Y1, . . . , Yn. Moreover, for p = 195 candidate words
(“motifs”) we have scores xij which measure how well the jth motif is represented in the ith DNA
sequence. The motifs are typically 5–15bp long candidates for the true binding site of the protein.
The hope is that the true binding site is in the list of significant variables showing the strongest
relationship between the motif score and the binding intensity. Using a linear model with S̃adap,
the multi-split method identifies one predictor variable at the 5% significance level. The single-split
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Figure 2: Simulations for case (A) in the top and (B) in the bottom row. Average number of
true positives vs. the family-wise error rate (FWER) for the single split method (“S”) against the
multi-split version (“M”). FWER is controlled (asymptotically) at α = 0.05 for both methods and
this value is indicated by a broken vertical line. From left to right are results for S̃fixed, S̃cv and
S̃adap. Simulation results for the same SNR and same number |S| of relevant variables are joined
by a broken line if |S| = 5 and an unbroken line if |S| = 10.
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Figure 3: Simulations for data (C). Average number of true positives vs. the family-wise error
rate (FWER) for the single split method (“S”) against the multi-split version (“M”). FWER is
controlled (asymptotically) at α = 0.05 for both methods and this value is indicated by a broken
vertical line. From left to right are results for S̃fixed, S̃cv and S̃adap. Simulation results for the
same SNR and same number |S| of relevant variables are joined by a broken line if |S| = 5 and an
unbroken line if |S| = 10.

method is not able to identify a single significant predictor. As mentioned above, we could control
other, less conservative error measures as discussed in Section 5.

5 Extensions

Due to the generic nature of our proposed methodology, extensions to any situation where (asymp-
totically valid) p-values P̃j for hypotheses H0,j (j = 1, . . . , p) are available are straightforward. An
important class of examples are generalized linear models (GLMs) or Gaussian Graphical Models.
The dimensionality reduction step would typically involve some form of shrinkage estimation. An
example for Gaussian Graphical Models would be the recently proposed ‘Graphical Lasso’ (Fried-
man et al., 2008). The second step would rely on classical (e.g. likelihood ratio) tests applied to
the selected submodel, analogous to the methodology proposed for linear regression.

We have shown above how the family-wise error rate (FWER) can be controlled in a multi-split
approach. We could control other error rates. Take for example the false-discovery rate (FDR). By
directly aggregating the p-values P̃ (b)

j (i.e. without applying a Bonferroni correction for the size of
the selected model S̃(b)), we can define “unadjusted” p-values Qj(γ) and Pj analogously to (2.2)
and (2.3) with the property that

lim sup
n→∞

P[Qj(γ) ≤ α] ≤ α,
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and
lim sup
n→∞

P[Pj ≤ α] ≤ α.

Now, by using a multiplicity correction as in Benjamini and Hochberg (1995) or Benjamini and
Yekutieli (2001) we can asymptotically control the FDR. However, the multiplicity correction in-
volves here (for the smallest p-value) a factor p, which can be much larger than the average value
of |S̃(b)| in high-dimensional settings, and it might be more powerful to work with the proposed
FWER-controlling procedure.

In some settings, control of FWER at α = 0.05 is too conservative. If the control of FDR, as
alluded to above, is also too conservative, our method can easily be adjusted to control the expected
number of false rejections. Take as an example the adjusted p-value Pj , defined in (2.3). Variable
j is rejected if and only if Pj ≤ α. (For the following, assume that adjusted p-values, as defined
in (2.1), are not capped at 1. This is a technical detail only as it does not modify the proposed
FWER-controlling procedure.) Rejecting variable j if and only if Pj ≤ α controls FWER at level
α. Instead, one can reject variables if and only if Pj/K ≤ α, where K > 1 is a correction factor.
Call the number of falsely rejected variables V ,

V =
∑
j∈N

1{Pj/K ≤ α}.

Then the expected number of false positives is controlled at level lim supn→∞ E[V ] ≤ αK. A proof of
this follows directly from the proof of Theorem 3.2. Of course, we can equivalently set k = αK and
obtain a control lim supn→∞ E[V ] ≤ k. For example, setting k = 1 offers a much less conservative
error control, if so desired, than control of the family-wise error rate.

6 Discussion

We proposed a multi-sample-split method for assigning statistical significance and constructing
conservative p-values for hypothesis testing for high-dimensional problems where the number of
predictor variables may be much larger than sample size. Our method is an extension of the single-
split method of Wasserman and Roeder (2008). Combining the results of multiple data-splits, based
on quantiles as summary statistics, improves reproducibility compared to the single-split method.
The multi-split method shares with the single-split method the property of asymptotic error control
and model selection consistency. We argue empirically that the multi-split method usually selects
much fewer false positives than the single-split method while the number of true positives is slightly
increased. The method is very generic and can be used for a broad spectrum of error controlling
procedures in multiple testing, including linear and generalized linear models.
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A Proofs

Proof of Theorem 3.1. For technical reasons we define

K
(b)
j = P

(b)
j 1{S ⊆ S̃(b)}+ 1{S 6⊆ S̃(b)}.

K
(b)
j are the adjusted p-values if the estimated active set contains the true active set. Otherwise, all

p-values are set to 1. Because of assumption (A1) and for fixed B, P[K(b)
j = P

(b)
j for all b = 1, . . . , B]

on a set An with P[An] → 1. Therefore, we can define all the quantities involving P (b)
j also with

K
(b)
j , and it is sufficient to show under this slightly altered procedure that

P[min
j∈N

Qj(γ) ≤ α] ≤ α.

In particular we can omit here the limes superior.

Define

πj(α) =
1
B

B∑
b=1

1
{
K

(b)
j /γ ≤ α

}
.

Note that the events {Qj(γ) ≤ α} and {πj(α) ≥ γ} are equivalent. Hence,

P
[

min
j∈N

Qj(γ) ≤ α
]
≤
∑
j∈N

E
[
1
{
Qj(γ) ≤ α

}]
=
∑
j∈N

E
[
1
{
πj(α) ≥ γ

}]
.

Using that x/y ≥ 1{x ≥ y} for all x, y > 0,∑
j∈N

E
[
1
{
πj(α) ≥ γ

}]
≤ 1
γ

∑
j∈N

E[πj(α)].

By definition of πj(·),

1
γ

∑
j∈N

E[πj(α)] =
1
γ

1
B

B∑
b=1

∑
j∈N∩S̃(b)

E
[
1
{
K

(b)
j ≤ αγ

}]
.

Moreover,
E
[
1
{
K

(b)
j ≤ αγ

}]
≤ P

[
P

(b)
j ≤ αγ

∣∣S ⊆ S̃(b)
]

=
αγ

|S̃(b)|
.

This is a consequence of the uniform distribution of P̃ (b)
j given S ⊆ S̃(b). Summarizing these results

we get
P
[

min
j∈N

Qj(γ) ≤ α
]
≤ α.

13



Proof of Theorem 3.2. As in the proof of Theorem 3.1 we will work with K
(b)
j instead of P (b)

j .

Analogously, instead of P̃ (b)
j we work with K̃

(b)
j .

For any K̃(b)
j with j ∈ N and α ∈ (0, 1),

E
[1
{
K̃

(b)
j ≤ αγ

}
γ

]
≤ α.

Furthermore,

E
[

max
j∈N

1
{
K

(b)
j ≤ αγ

}
γ

]
≤ E

[ ∑
j∈N∩S̃(b)

1
{
K

(b)
j ≤ αγ

}
γ

]
≤

∑
j∈N∩S̃(b)

α

|S̃(b)|
≤ α. (A.4)

For a random variable U taking values in [0, 1],

sup
γ∈(γmin,1)

1
{
U ≤ αγ

}
γ

=


0 U ≥ α,

α/U αγmin ≤ U < α,

1/γmin U < αγmin.

Moreover, if U has a uniform distribution on [0, 1],

E
[

sup
γ∈(γmin,1)

1
{
U ≤ αγ

}
γ

]
=
∫ αγmin

0
γ−1

mindx+
∫ α

αγmin

αx−1dx = α(1− log γmin).

Hence, by using that K̃(b)
j has a uniform distribution on [0, 1] for all j ∈ N , conditional on S ⊆ S̃(b),

E
[

sup
γ∈(γmin,1)

1
{
K̃

(b)
j ≤ αγ

}
γ

]
≤ E

[
sup

γ∈(γmin,1)

1
{
K̃

(b)
j ≤ αγ

}
γ

∣∣S ⊆ S̃(b)
]

= α(1− log γmin).

Analogously to (A.4),

E
[

max
j∈N

sup
γ∈(γmin,1)

1
{
K

(b)
j ≤ αγ

}
γ

]
≤ α(1− log γmin).

Averaging over all bootstrap samples yields

E
[

max
j∈N

sup
γ∈(γmin,1)

1
B

∑B
b=1 1

{
K

(b)
j /γ ≤ α

}
γ

]
≤ α(1− log γmin).

Using that x/y ≥ 1{x ≥ y} for all x, y > 0,

E
[

max
j∈N

sup
γ∈(γmin,1)

1{πj(α) ≥ γ}
]
≤ α(1− log γmin),

where we have used the same definition for πj(·) as in the proof of Proposition 3.1.
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Since the events {Qj(γ) ≤ α} and {πj(α) ≥ γ} are equivalent, it follows that

P
[

min
j∈N

inf
γ∈(γmin,1)

Qj(γ) ≤ α
]
≤ α(1− log γmin),

implying that
P
[

min
j∈N

inf
γ∈(γmin,1)

Qj(γ)(1− log γmin) ≤ α
]
≤ α.

Using the definition of Pj in (2.3),

P
[

min
j∈N

Pj ≤ α
]
≤ α,

which completes the proof.

Proof of Corollary 3.1. Because the single-split method is model selection consistent, it must hold
that P[maxj∈S P̃j |S̃| ≤ αn]→ 1 for n→∞. Using multiple data-splits, this property holds for each
of the B splits and hence P[maxj∈S maxb P̃

(b)
j |S̃(b)| ≤ αn]→ 1, which implies that, with probability

converging to 1 for n→∞, the quantile maxj∈S Qj(1) is bounded from above by αn. The maximum
over all j ∈ S of the adjusted p-values Pj = (1− log γmin) infγ∈(γmin,1)Qj(γ) is thus bounded from
above by (1− log γmin)αn, again with probability converging to 1 for n→∞.
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Bühlmann, P. (2006). Boosting for high-dimensional linear models. Annals of Statistics, 559–583.

Conlon, E. M., X. S. Liu, J. D. Lieb, and J. S. Liu (2003). Integrating regulatory motif discovery
and genome-wide expression analysis. Proceedings of the National Academy of Science 100, 3339
– 3344.

Fan, J. and J. Lv (2008). Sure independence screening for ultra-high dimensional feature space.
Journal of the Royal Statistical Society Series B 70 (5), 849–911.

15



Friedman, J., T. Hastie, and R. Tibshirani (2008). Sparse inverse covariance estimation with the
graphical Lasso. Biostatistics 9 (3), 432.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals
of Statistics 29, 1189–1232.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of
Statistics 6, 65–70.

Meinshausen, N. (2007). Relaxed Lasso. Computational Statistics and Data Analysis 52 (1), 374 –
393.
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