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Abstract

Inspired by the success of the Lasso for regression analysis (Tibshi-

rani, 1996), it seems attractive to estimate the graph of a multivari-

ate normal distribution by `1-norm penalised likelihood maximisation.

The objective function is convex and the graph estimator can thus be

computed efficiently, even for very large graphs. However, we show

in this note that the resulting estimator is not consistent for some

graphs.

1 Introduction

Let X be a p-dimensional random vector X = (X(1), . . . , X(p)) with a

multivariate normal distribution,

X ∼ N (0, Σ). (1.1)

Denote the concentration matrix by K = Σ−1. The corresponding graph

G = G(K) is given by G = (Γ, E) with nodes Γ = {1, . . . , p}. The edge set is

given by all pairs (a, b) ∈ Γ× Γ so that a 6= b and Ka,b 6= 0.
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The distribution of X belongs to an exponential family, and the log-

likelihood `n(K) of i.i.d. observations Xi, i = 1, . . . , n under concentration

matrix K = Σ−1 is given by

`n(K) = −
n∑

i=1

{XT
i KXi − A(K)},

where A(K) ∝ − log |K|. The MLE of the concentration matrix is

K̂MLE = arg min
M

{−`n(M)}., (1.2)

where `n(M) is the log-likelihood of the observations Xi, i = 1, . . . , n under

concentration matrix M . The MLE of the covariance matrix,

ΣMLE = {K̂MLE}−1,

is componentwise identical to the empirical covariances between the corre-

sponding pair of variables (Lauritzen, 1996).

It is often of interest to estimate the underlying graph of the distribution,

that is estimate structural zeros of the inverse covariance matrix. The MLE

leads to a full graph estimator, that is all edges are in general present in the

MLE. Edge selection is usually achieved by adding a l0-type penalty to the

likelihood,

K̂pen = arg min
M

{−`n(M) + nλ‖M‖0}, (1.3)

where ‖M‖0 :=
∑

a 6=b 1{Ma,b 6= 0} counts the number of edges present in the

graph (Dempster, 1972; Edwards, 2000).

The convexity of the likelihood function is lost in the objective function

in (1.3) as the added penalty term is not convex. The solution to (1.3)

is thus usually found by greedy search, using forward selection or backward

elimination of edges. This greedy search (let alone finding the exact solution)

becomes infeasible for large graphs.

A remedy to the high computational complexity of (1.3) is to add a convex

penalty term instead of the l0-penalisation. For ordinary regression, Tibshi-

rani (1996) proposed the Lasso, by adding a `1-norm penalisation instead of
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the more common l0-penalisation. An efficient algorithm for computing the

exact solution to the resulting convex optimisation problem has been pro-

posed recently in Efron et al. (2004). It seems interesting to examine if a

`1-penalisation could lead to a reasonable graph estimator.

2 Lasso Graph Estimators

The Lasso-type estimator of K can be defined as the minimizer of the

negative log-likelihood with an added penalty term proportional to the `1-

norm of the non-diagonal elements of the concentration matrix,

K̂λ = arg min
M

{−`n(M) + nλ‖M‖1}, (2.4)

where ‖M‖1 :=
∑

a 6=b |Ma,b|. We show in the following that the Lasso-

estimator (2.4) is not consistent for estimating the structure of the graph,

regardless of how the penalty parameter λ is chosen.

An alternative approach to the Lasso-estimator would be to penalize the

sum of the absolute values of the partial correlations instead of the diagonal

entries of the concentration matrix. However, the concern about consistency

is the same as for the present formulation of the Lasso estimator.

Solutions characteristics.

We characterize the solutions to (2.4). The distinctive feature of the

solutions is a soft-thresholding of the estimated covariances Σ̂λ = {K̂λ}−1.

Proposition 1 For any λ and {a, b} ∈ Γ×Γ so that K̂λ
a,b 6= 0 and a 6= b, it

holds that

Σ̂λ
a,b − Σ̂MLE

a,b = λ sign(K̂λ
a,b).

For any λ and {a, b} ∈ Γ× Γ so that K̂λ
a,b = 0 and a 6= b, it holds that

|Σ̂λ
a,b − Σ̂MLE

a,b | ≤ λ.

Finally, for all a ∈ Γ, Σ̂λ
a,a = Σ̂MLE

a,a .
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Proof. The concentration matrix K̂λ is a solution to (2.4) if and only if the

subdifferential of the objective function in (2.4) with respect to Ka,b contains

0 for every pair a, b ∈ Γ× Γ. If Ka,b 6= 0, the subdifferential of the objective

function in (2.4) with respect to Ka,b is identical to

n∑
i=1

{X(a)
i X

(b)
i + (∂/∂Ka,b)A(K)}+ nλ sign(K̂λ

a,b).

Using a general property of exponential distributions, the derivative of A(K)

with respect to Ka,b is given by the expectation of the sufficient statistics

−X(a)X(b) under concentration matrix K, which is identical to −(K−1)a,b.

Using
∑n

i=1(X
(a)
i X

(b)
i ) = nΣ̂MLE

a,b and EK̂λ(X
(a)
i X

(b)
i ) = Σ̂λ

a,b, the first part of

the Proposition follows. For the second part, where K̂λ
a,b = 0, the subdiffer-

ential is given by the interval

[Σ̂MLE
a,b − Σ̂λ

a,b − λ, Σ̂MLE
a,b − Σ̂λ

a,b + λ],

and the claim follows. The third part about the diagonal elements follows

analogously.

3 Consistency

Let G(K) = (Γ, E) be again the graph associated with the concentration

matrix K = Σ−1, so that a pair of nodes in Γ is included in the edge set E if

and only if the corresponding entry in K is non-zero. For an estimate K̂ of

the concentration matrix, the corresponding estimate Êλ of the edge set E

is given by the set of non-zero (and non-diagonal) entries of K̂λ.

We show for an example that the estimator (2.4) cannot be consistent for

graph estimation.

Example 1 Let Γ = {1, 2, 3, 4} and the edge set E given by all (a, b) ∈ Γ×Γ

so that a 6= b and (a, b) 6= (1, 4). The covariance matrix is then determined

for some 0 < ρ < 1/
√

2 by

Σa,a = 1 for a ∈ {1, 2, 3, 4, 5}
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Figure 1: The graph of Example 1.

Σa,b = ρ for {a, b} ∈ {{1, 2}, {1, 3}, {2, 4}, {(3, 4}}

Σa,b = 0 for {a, b} = {2, 3}

A picture of the graph is given in Figure 1.

The population case.

We make first an argument why the Lasso estimator is not consistent

for the population case, regardless of how the penalty parameter is chosen.

Consider that the MLE-covariance matrix is identical to the true covariance

matrix. In some sense, this is the best case one could hope for. The corre-

sponding estimate is denoted by Kλ,

Kλ = arg min
M

{E(−`n(M)) + λ‖M‖1},

For λ = 0, the estimator is identical to the true concentration matrix,

KMLE = K, and ΣMLE = {KMLE}−1 = Σ. Nevertheless, this Lasso es-

timator Kλ produces the wrong graph for arbitrarily small values of λ, if

ρ > −1 + (3/2)1/2 ≈ 0.23. As Kλ → K for λ → 0, it holds for sufficiently

small values of λ that sign(Kλ
a,b) = sign(Ka,b) for all (a, b) ∈ Γ × Γ with

Ka,b 6= 0. Then, by Proposition 1, it follows that that Σλ
2,3 = λ and

Σλ
1,2 = Σλ

1,3 = Σλ
2,4 = Σλ

3,4 = ρ− λ.
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If indeed Kλ
1,4 = 0, this would imply that the covariance between nodes 1

and 4 is given by

2(ρ− λ)2/(1 + λ) = 2ρ2 − (4ρ + 2ρ2)λ + O(λ2)

The true covariance is 2ρ2 and thus |Σλ
1,4 −Σ1,4| > (4ρ + 2ρ2)λ + O(λ2). For

small enough positive values of λ, the r.h.s. is larger than λ (using ρ > 0.23).

This is in contradiction to Proposition 1 by which |Σλ
1,4 − Σ1,4| ≤ λ. Hence

Kλ
1,2 6= 0. The graph is thus not estimated correctly with the population

estimate Kλ for small penalties λ even though adding no penalty at all (λ =

0) would produce the correct result.

The penalty has thus for the edge 1-4 an effect that is opposite to what

is intended: instead of “pushing” the estimate of the partial correlation to-

wards zero with increasing size of the penalty, the penalty rather pushes the

estimate of the partial correlation away from zero.

Finite samples.

As the effect of the penalty is opposite to what is intended for the edge

1-4, it is not surprising that the random fluctuations due to a limited number

of observations cannot make up for this effect. Using the results above, it is

indeed shown in the following that the Lasso estimator is not consistent for

finite sample sizes.

For notational simplicity, denote the estimated entry K̂λ
1,4 by k̂λ. The

unpenalized estimate, k̂0, is unbiased, that is E(k̂0) = 0 for n > 6 (Lauritzen,

1996). There is always positive probability that the estimate is negative and,

because of asymptotic normality of k̂0,

lim
n→∞

P (k̂0 < 0) = 0.5. (3.5)

We show in the following that, if indeed k̂0 < 0, then an added penalty λ

pushes the estimate even further away from zero. That is, for sufficiently

small λ, it holds with probability converging to 0.5 for n →∞ that

k̂λ < k̂0 < 0, (3.6)
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and the edge 1-4 is in this case falsely included into the edge set estimate.

Using (3.5), it follows that for all penalty sequences with λ = o(1) for n →∞,

the edge set is different from the true edge set with non-negligible probability.

Theorem 1 Consider the graph in Example 1 with edge set E and edge set

estimate Êλ. If ρ > −1 + (3/2)1/2 ≈ 0.23, it holds for any sequence λ = λn

with λ = o(1) for n →∞, that the edge set is wrongly estimated with positive

probability,

lim inf
n→∞

P (Êλ 6= E) ≥ 0.5.

Proof. We only need to prove that (3.6) holds with positive probability. This

is true by the following Lemma 1, which completes the proof. �

Lemma 1 Let λ = λn = o(1) for n →∞. If ρ > −1 + (3/2)1/2 ≈ 0.23,

lim inf
n→∞

P (k̂λ < k̂0 < 0) ≥ 0.5.

Proof. The probability that k̂0 = K̂0
1,4 < 0 is converging to 0.5 for n → ∞.

Using

k̂λ = k̂0 + {∂k̂λ

∂λ
(λ = 0)}λ + Op(λ

2),

it suffices to show that there exists some positive constant c(ρ) > 0 so that,

with probability converging to 1 for n →∞,

∂k̂λ

∂λ
(λ = 0) < −c(ρ).

Using K̂0 →p K (Lauritzen, 1996), it follows that, with probability converg-

ing to 1 for n → ∞, sign(K̂0
a,b) = sign(Ka,b) for all {a, b} 6= {1, 4}. Define

matrix ∆ as

∆a,b =


0 a = b

1 {a, b} = {2, 3}
−1 otherwise

.

As limn→∞ P (k̂0 = K̂0
1,4 < 0) = 0.5, it follows by convergence in probability

of K̂0 to K for n →∞ that

lim
n→∞

P{sign(K̂0) = ∆} = 0.5 (3.7)
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Suppose for the following that indeed sign(K̂0) = ∆. By Proposition 1, the

estimated covariance Σ̂λ = {K̂λ}−1 is then, for sufficiently small values of λ,

given by

Σ̂λ = Σ̂MLE + λ∆.

Using that K̂λ = {Σ̂λ}−1, the derivative of K̂λ with respect to λ is given

under the above sign-condition by

∂K̂λ

∂λ
(λ = 0) = −K̂0∆ K̂0.

It holds that K̂0 →p K. Note that, for ρ > −1 + (3/2)1/2, there exists some

c(ρ) > 0 so that

−(K∆K)1,4 < −2c(ρ).

Hence

lim
n→∞

P{−(K̂0∆ K̂0)1,4 < −c(ρ)} = 1.

Thus, using (3.7),

lim inf
n→∞

P
{

k̂0 < 0 ∧ ∂k̂λ

∂λ
(λ = 0) < −c(ρ)

}
= 0.5,

which completes the proof. �
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