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Abstract

We discuss Monte Carlo methods for valuing options with multiple

exercise features in discrete time. By extending the recently developed

duality ideas for American option pricing we show how to obtain estimates

on the prices of such options using Monte Carlo techniques. We prove

convergence of our approach and estimate the error. The methods are

applied to options in the energy and interest rate derivative markets.

1 Introduction

A difficult problem in derivatives pricing has been to price high dimensional

American style options quickly and accurately. The methodology for pricing

European contracts numerically, such as trees and finite difference methods

for partial differential equations, leads to methods that are prohibitively time

consuming when the dimension of the problem gets large. The alternative ap-

proach via Monte Carlo methods works more effectively in high dimensions but

the technique is difficult to apply to options with early exercise features.

There is now an extensive literature on the high dimensional American op-

tion pricing problem. The first work in this direction was Tilley (1993) and

this has been followed by a number of papers (Barraquand and Martineau 1995;

Broadie and Glasserman 1997a; Broadie and Glasserman 1997b; Tsitsiklis and

Van Roy 1999; Longstaff and Schwartz 2001), using techniques for approxima-

tion of the exercise boundary. As the price is the supremum over the return

from all possible exercise strategies, these techniques determine a non-optimal

exercise strategy and therefore naturally give a lower bound on the price. A re-

cent development (Andersen and Broadie 2001; Haugh and Kogan 2001; Rogers

2002), has been to consider the dual problem and, using this, try to improve

the Monte Carlo approach and produce a positive-biased estimate for the price.
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2Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, UK

1



At first sight this seems impractical as the dual problem is infinite dimen-

sional, involving minimising over a space of martingales. Fortunately it appears

to be possible to choose martingales which are close to optimal to get accurate

approximations, which enable this technique to be potentially useful.

We extend this theory to the multiple exercise case. We are able to obtain

an expression for the value of the option as the infimum over a choice of stop-

ping times and martingales. We then develop an algorithm using this which

gives a positive-biased bound on the price. The key idea that we use is to ex-

press the martingale in terms of the value function and, as we have accurate

approximations to the value function using recent techniques, such as those in

Longstaff and Schwartz (2001), we can construct a reasonable approximation to

the optimal martingale.

We will consider two examples where our results can be applied. We use

simple models to illustrate our ideas but the extension to models with higher

dimensionality or more complicated dynamics is straightforward. The first is a

chooser flexible cap, a product from the interest rate market which gives the

holder the right to exercise a certain number of caplets over the life of the

contract. In this setting we may consider having any number of exercise oppor-

tunities up to the total number of exercise dates, which is 40 in our example.

The positive-biased and negative-biased estimates are seen to be within 1-2 %

of each other using around 1000 sample paths. A tight 99% confidence interval

for the price can thus be formed.

Our second example is a very similar product from the energy derivatives

market; a swing type option. We consider a stylized version of this product;

for our purposes a swing option gives the holder a certain number of exercise

opportunities at which the holder has the right to purchase power at a given

price. We treat the problem as determining the expected value of this option

under a suitable pricing measure. We assume there are 1000 possible exercise

times and up to 100 exercise possibilities and obtain confidence intervals which

show that there is still only a small gap between the upper and lower estimates.

Naturally significant differences remain to be analyzed in any application to

contracts actually traded in the energy markets.

The structure of the paper is as follows. We begin by setting up the discrete
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time formulation of the problem as a Markov decision process. Our next step

is to give the main results concerning the approximation of the value function

and the methods for the implementation of our approach. Once we have this

we can analyse the algorithm, proving convergence and obtaining an estimate

of the error. We follow with the numerical results and conclude with the proofs

of the results given in section 3.

2 Preliminaries

In this paper we will work with a discrete time Markov decision process which

we now specify. Let E denote the space in which our underlying process lives,

this will always be a subset of Rd. The underlying process {Xt} is a dis-

crete time Markov chain, taking values in E, on the filtered probability space

(Ω,F , {Ft}T
t=0,P). The problems that we consider are always defined over fi-

nite lifetimes and hence time is always bounded by the finite maturity date T .

We will write E for expectation with respect to P and Et = E(·|Ft) for the

conditional expectation at time t.

As we are interested in multiple exercise problems we will need to keep track

of the number of exercise opportunities available which we label by n ∈ N. We

will assume that it is possible to use an exercise opportunity at time 0, and

thus up to maturity T , there are T + 1 possible exercise times. The natural

state space for our Markov decision process is S = E × N. As time evolves,

and we apply our actions, the decision process will move on S according to the

dynamics inherited from the probability law for X.

We also have A, a set of actions which can be taken. In this setting we take

A = {0, 1}, where we interpret 0 as exercise and 1 as continuation. Note that if

n = 0, then the only possible action is to continue. The action space can alter-

natively be viewed as determining stopping times τ at which to use an exercise

opportunity. We also have a payoff function, Z : [0, . . . , T ]×S → R, the reward

earned by using an exercise opportunity when the underlying process is at a par-

ticular point in space and time. We will assume that E(maxt=0,...,T |Zt|) < ∞

and that Z is independent of n.

Our aim is to maximize the expected payoff from the multiple exercise op-
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portunities and we begin by defining the optimization problem we will solve.

We call a set of stopping times {τn, . . . , τ1} with τn < . . . < τ1 a policy π.

τm determines the time where the m-th remaining exercise opportunity is used

under policy π. The expected payoff under policy π is,

V π,n
t (x) = Et

[ n∑
m=1

Zτm |Xt = x
]
.

We note that V π,n
t : E → R is a function of x ∈ E, the state of the underlying

Markov chain at time t.

The option pricing problem of finding the value function is then an opti-

mization problem, to find the exercise policy π for which the expected payoff is

maximized.

Definition 1 The value function V ?,n
t , with n remaining exercise opportunities

is the expected payoff under an optimal policy,

V ?,n
t (x) = sup

π
Et

[ n∑
m=1

Zτm
|Xt = x

]
.(1)

If the supremum is attained, we denote the corresponding optimal policy by

π? = {τ?
n, . . . , τ

?
1 }.

Definition 2 The marginal value ∆V π,n
t is defined for every policy π and for

n ≥ 1 as:

∆V π,n
t (x) = V π,n

t (x)− V π,n−1
t (x).(2)

For n = 1 this amounts to ∆V π,1
t = V π,1

t . Under an optimal policy π? we

denote the marginal value by ∆V ?,n
t .

The marginal value thus specifies the additional payoff that can be expected

from having one more exercise right (or alternatively, the loss that is incurred

from having one less exercise right).

3 Methods

In general no unbiased estimate of the value of the multiple exercise option is

available. We thus try to bound the value of the option from above and from
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below as well as possible. Assume that two random variables V ↑,n
0 and V ↓,n

0 are

given with positive and negative bias respectively, in that

E[V ↓,n
0 ] ≤ V ?,n

0 ,

E[V ↑,n
0 ] ≥ V ?,n

0 .(3)

Let µ↑ be the mean and σ↑ be the standard deviation of V ↑,n
0 overN independent

samples. We define µ↓ and σ↓ similarly for V ↓,n
0 . An (asymptotically correct)

1− α confidence interval for the true value V ?,n
0 is then given by

(4)
[
µ↓ − β

σ↓√
N
, µ↑ + β

σ↑√
N

]
,

where β = Φ−1(1− α/2) is the 1− α/2-quantile of the standard normal distri-

bution.

Note that the width of the confidence interval is determined by two contribu-

tions, the gap between the expected value of the positive- and negative-biased

estimate on the one hand and the width of the distribution of the positive-

or negative-biased estimate. The latter contribution becomes negligible as the

number of samples N used to determine the bound increases. Hence we are

interested in finding estimates with a small or vanishing bias.

A negative-biased estimate is readily obtained as the payoff along a random

path under any given policy π = {τn, . . . , τ1}. Indeed it follows from Definition

1 that the random variable

(5) V ↓,n
0 =

n∑
m=1

Zτm

has a negative bias. The bias vanishes as soon as the optimal policy in the sense

of Definition 1 is used. We will return later to the question of how to obtain an

approximation to the optimal policy.

3.1 Positive-Biased Estimate

Our aim in the following is to find a positive-biased estimate of the value function

using duality ideas. We tackle the problem sequentially and find a positive-

biased estimate for the marginal value. We begin with a key theorem that gives

a dual formulation for the marginal value. The proof can be found in Section 5.
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Theorem 1 The marginal value ∆V ?,n
0 is equal to:

∆V ?,n
0 = inf

π
inf

M∈H0
E0

[
max

u∈(T \{τn−1,...,τ1})

(
Zu −Mu

)]
,

where T = {0, . . . , T} is the set of possible exercise dates, 0 ≤ τn−1 < . . . < τ1

are stopping times, {Mt} is a martingale and H0 is the set of all martingales

that are zero at time t = 0. Moreover, the infimum is attained for the optimal

policy π? and the martingale M? with M?
0 = 0, whose increment at time t is

the martingale part of the marginal value function:

(6) M?
t −M?

t−1 = ∆V ?,m
t − Et−1[∆V

?,m
t ],

where m is the largest natural number such that t ≤ τm.

Remark 1 This is an extension of the single exercise case (n=1) where the

dual problem, found in Haugh and Kogan (2001) and Rogers (2002), is given by

V ?,1
0 = inf

M∈H0
Et

[
max

0≤t<T
(Zt −Mt)

]
.

A positive-biased estimate of the value of an option with multiple exercise

possibilities can easily be found with help of Theorem 1.

Definition 3 We define for any policy π and martingale M with Mt = 0 the

random variable ∆V ↑,n
t by

∆V ↑,n
t = max

u∈(T \{τn−1,...,τ1})

(
Zu −Mu

)
,

where T = {t, . . . , T}

According to Theorem 1, it holds that for any policy and martingale

E[∆V ↑,n
0 ] ≥ ∆V ?,n

0 .

Summing up the marginal values, we obtain the random variable V ↑,n
0 ,

(7) V ↑,n
0 =

n∑
m=1

∆V ↑,m
0 .

This random variable is positive-biased in the sense of equation (3). The mag-

nitude of the bias depends on the choice of the policy π and martingale M in

(7) and vanishes for the optimal policy π? and the martingale M? as specified

in Theorem 1.
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3.2 Policy and Martingale Construction

The magnitude of both the negative bias of V ↓,n
0 and the positive bias of V ↑,n

0

depend on the quality of the optimal policy-approximation and, in the case of

V ↑,n
0 , additionally on the quality of the optimal martingale-approximation.

We will show in the following how such approximations can be obtained from

an approximation ∆V n
t to the marginal value function ∆V ?,n

t . The resulting

policy and martingale are optimal if the approximation ∆V n
t coincides with

the true value function ∆V ?,n
t . Hence the bias of both the negative-biased and

positive-biased estimate of the value function vanish for an optimal approxima-

tion to the value function.

An approximation to the value function can be obtained in several ways.

Methods based on value-function regression (Longstaff and Schwartz 2001; Tsit-

siklis and Van Roy 2001) seem to be suitable but other methods, such as dynamic

programming, are possible in a problem of reduced dimensionality. We are going

to employ value-function regression in the numerical examples, in particular the

algorithm proposed by Longstaff and Schwartz (2001). Convergence of the al-

gorithm in Longstaff and Schwartz (2001) has recently been proven in Clement,

Lamberton, and Protter (2002).

We assume an approximation to the value function to be available for the

following.

Optimal Policy Approximation. Assuming that the true value function is

known, the optimal policy is given by exercising the option if and only if the

payoff from immediate exercise is larger than the expected marginal value under

continuation.

An approximation to the optimal policy can be obtained by replacing the

marginal value ∆V ?,n
t by an approximation ∆V n

t .

Definition 4 The policy π = {τn, . . . , τ1} is defined by the stopping time

τn = min{t : Zt > Et[∆V n
t+1]},

and, for m = 1, . . . , n− 1, by

τm = min{t > τm+1 : Zt > Et[∆V m
t+1]},
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In the case that the approximation to the value function is the true value

function, we clearly have that π = π? and the optimal policy is obtained.

Optimal Martingale Approximation. An approximation to the martin-

gale of equation (6) can also be obtained from an approximation to the value

function. Theorem 1 states that the infimum is attained for the martingale M?,

with M?
0 = 0 and increments

M?
t −M?

t−1 = ∆V ?,m
t − Et−1[∆V

?,m
t ],

where m is the largest number such that t ≤ τm.

We consider as an approximation to M? the martingale M with increments

given by replacing the marginal value function by its approximation and replac-

ing the expectation by a Monte Carlo approximation.

Definition 5 The martingale M is defined by M0 = 0 and for 1 ≤ t < T by

the increments

Mt −Mt−1 = ∆V m
t − Em

t−1,

where m is the largest natural number such that t ≤ τm and Em
t−1 is a Monte

Carlo approximation to Et−1[∆V m
t ]. In particular, let Xi

t , i = 1, . . . , k be inde-

pendent samples from the distribution of Xt conditional on Xt−1. Then

(8) Em
t−1 =

1
k

k∑
i=1

∆V m
t (Xi

t).

If the approximation to the value function is identical to the true value

function, we obtain the optimal martingale M? in the limit as k →∞, where k

is the number of samples in the Monte Carlo approximation (8).

3.3 Computational Complexity

Once an approximation to the value function is found, the effort required for

computing a single realization of the negative-biased V ↓,n
0 consists essentially of

computing a realisation of the Markov chainXt and the corresponding payoff Zt.

Thus the computational cost for the negative-biased estimate increases linearly

with the number of timesteps T .
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The same holds true for the positive-biased estimate, as the computation of

the positive-biased estimate only incurs the additional cost of computing the

martingale M , and again this increases only linearly with T .

The cost for computing a single realization of the martingale M is addition-

ally roughly linear in k, where k is the number of independent samples used in

the Monte Carlo approximation (8). This seemingly makes accurate approxi-

mations to the optimal martingale prohibitive. Note, however, that the more

accurate the approximation to the optimal martingale the smaller the variance

of V ↑,n
0 . In fact, by Lemma 7 and 8, the variance (and the bias) of V ↑,n

0 van-

ishes in the limit of an optimal approximation. Thus fewer samples of V ↑,n
0 are

needed in the limit of large k, offsetting the computational burden incurred by

the Monte Carlo approximation (8) in the construction of the martingale.

3.4 Error Analysis

We examine the magnitude of the positive bias of ∆V ↑,n
0 incurred by using these

approximations instead of the optimal policy π? and martingale M?. Using

Theorem 1 we can define the bias in the marginal value under approximations

to the optimal policy and martingale.

Definition 6 For any policy π = {τn−1, . . . , τ1} and martingale M , the bias

at time t with n exercise opportunities remaining Bn
t (π,M) of the estimated

marginal value is denoted by

Bn
t (π,M) = Et

[
∆V ↑,n

t

]
−∆V ?,n

t .

In order to estimate the bias we define two distance functions.

Definition 7 We define the distance DV between ∆V ? and the given approxi-

mation ∆V as

DV = sup
m=1,...,n,

x∈E, 0≤t<T

∣∣∆V ?,m
t (x)−∆V m

t (x)
∣∣

The distance Dn
π between the policy π = {τn, . . . , τ1} and the optimal policy

π? = {τ?
n, . . . , τ

?
1 } is

Dn
π = V ?,n

0 − V π,n
0
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We denote by σk a bound on the standard deviation of the Monte Carlo estimate

in the approximation (8) of the martingale M :

σ2
k = sup

m=1,...,n,

x∈E, 1≤t<T

Et−1

[(
Em

t−1 − Et−1[∆V m
t ]

)2]
Theorem 2 The bias of the marginal value estimate is bounded above, in that

Bn
0 (π,M) ≤ Dn−1

π + 2
√

(4D2
V + σ2

k) T

The proof of this result can be found in Section 6. We note that the bound will

only be non-trivial when DV and σk exist. These exist in the case of bounded

payoff, but also under weaker moment conditions. For instance σk will exist

provided that the payoff process is L2-bounded. They will exist for call and put

payoffs under the standard Black-Scholes model and for the options and models

we discuss in this paper.

For the single-exercise case, Dn−1
π = 0 and we are left with the second term

only. This is consistent with the fact that no stopping time has to be chosen

for the evaluation of ∆V ↑,1
0 and hence the bias of the positive-biased estimate

is independent of the quality of the optimal-policy approximation.

If the quality of the value function approximation is not affected by the

number T of timesteps, it is clear by Theorem 2 that the bias of the estimated

marginal values and hence of V ↑,n
0 scales maximally with the square root of the

number T of timesteps.

4 Numerical Results

We now apply the proposed method to two products in the financial markets.

First we give a complete description of the algorithm employed.

The valuation involves three main steps.

Step 1: Fitting the Value Function. We employ value-function regres-

sion, in particular the method by Longstaff and Schwartz (2001) to obtain an

approximation to the marginal value function.

A fixed number of independent paths (here 1000) of the underlying Markov

Chain Xt, t = 0, . . . , T are computed and stored with common starting value

X0 = x0, where x0 is the point at which the value of the option is to be evaluated.
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Instead of directly fitting the marginal value function, we compute an ap-

proximation to the continuation value Qm
t , see Definition 8. The continuation

value is smoother than the value function. Furthermore the continuation value

is of direct use in the optimal policy approximation, see Definition 4. An ap-

proximation to the value function is then readily obtained by equation (11) and

an approximation to the marginal values by equation (2).

The algorithm works backwards in time, starting at terminal time t = T ,

where the continuation value vanishes identically. At time t < T an approx-

imation to the continuation value is already available for times larger than t.

Hence, using Definition 4, an approximation to the optimal policy is available.

For each value for the number of exercise opportunities m = 1, . . . , n, we do the

following:

(1) The payoff under the approximated optimal policy (and the additional con-

straint τm > t as we are interested in the continuation value) is calculated for

each path.

(2) A linear regression model is then fitted for the continuation value. Thus

for each timestep we have n different linear regression models. The set of basis

function {ψ1, . . . , ψl} for the regression model is the same for all values of t and

m but chosen differently for different option contracts.

Step 2: Computing the negative-biased estimate. A new set of inde-

pendent paths (here 1000) with X0 = x0 is computed. For each path the accu-

mulated payoff V ↓,n
0 , equation (5), is computed under policy π of Definition 4,

using the approximation to the continuation value obtained from Step 1. The

average µ↓ and the standard deviation σ↓ for these N = 1000 realizations of

V ↓,n
0 are calculated.

Step 3: Computing the positive-biased estimate. Another new set of

independent paths (here 20) with X0 = x0 is computed. For each path the fol-

lowing is done. For every initial number m = 1, . . . , n of exercise opportunities,

the martingale Mt is computed according to Definition 5 with a constant k = 50

in the Monte Carlo approximation (8). The value of ∆V ↑,m
0 is then computed

for every value of m = 1, . . . , n according to equation (7) and V ↑,n
0 is obtained

by summing up the marginal values, see equation (7). Hence we obtain in to-
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tal N = 20 independent realizations of the random variable V ↑,n
0 . Again the

average µ↑ and standard deviation σ↑ over these realizations are computed.

The confidence interval is then formed according to equation (4).

Note that the number of paths (N = 20) used to evaluate the positive-

biased estimate is small compared to the number of paths (N = 1000) used

to evaluate the negative-biased estimate. On the one hand this ensures that

the effort for the computation of µ↑ and µ↓ is comparable, as the martingale

approximation (with k = 50) in the case of the positive-biased estimate makes

the computation of a single realization of V ↑,n
0 about k times as costly as the

computation of a single realization of V ↓,n
0 . On the other hand, the variance

of V ↑,n
0 is magnitudes smaller than the variance of V ↓,n

0 . In fact, the variance

of V ↑,n
0 vanishes if the approximation to the policy π? and martingale M? is

optimal (as shown in Lemma 8). Hence many fewer paths are needed in the

case of the positive-biased estimate to achieve the same degree of accuracy as

for the negative-biased estimate.

4.1 Chooser Flexible Cap

The chooser flexible cap is a product in the interest rate market which enables

the holder to protect themselves against adverse movements in the interest rate.

An interest rate cap is a sequence of caplets at, for instance, quarterly intervals

over the lifetime of the option. For our purposes the i-th caplet provides the

holder at time Ti with a payment of the notional multiplied by the difference

in the current interest rate R and the fixed strike K, if it is positive. A flexible

cap (sometimes called an autocap or a limit cap) is similar to the cap with the

additional feature that at most n caplets will be exercised over the lifetime of

the option, where n < T with T being the total number of possible caplets in the

lifetime of the option. These caplets are exercised automatically if the interest

rate is above K at the payment date. The chooser flexible cap allows greater

flexibility in that it provides the holder with the decision at each payment date

of whether to exercise the caplet or to spare the caplet for use at a later time

when the interest rate might be substantially above K and hence the associated

payoff larger. The caplets will expire worthless, however, if not used before the

end of the option contract period.
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The chooser flexible cap is thus a product suited to the pricing approach we

have developed here and we illustrate our methods with a particular example.

We take the lifetime of the option to be T = 40, and here the total number of

possible exercise dates also to be T = 40. This corresponds to an option with

lifetime 10 years and quarterly exercise rights.

To price the option, a particular model for the interest rate Rt has to be

specified. We will assume that we are directly modelling the market in the

martingale measure as would be the case if the model were calibrated to market

data. By way of a simple two-dimensional example, we use a two-factor additive

Gaussian model from Brigo and Mercurio (2001), a variant of the Longstaff-

Schwartz model (Longstaff and Schwartz 1992). The dynamics of the interest

rate are given by Rt = φt + St + Ut with φt a deterministic time varying rate

and S0 = U0 = 0 with

dSt = −aStdt+ σdW s
t

dUt = −bUtdt+ ηdWu
t ,

where W s and Wu are Brownian motions with correlation dW s
t dW

u
t = ρdt. The

payoff of the chooser flexible cap under an exercise decision is max{Rt −K, 0},

where Rt is the interest rate at the beginning of the t-th quarter. The constants

are set to a = 5, b = 2, σ = 0.05, η = 0.02, ρ = 0.2 and φt = 0.05 for all time.

The strike is given by K = 0.05.

As the model is Gaussian we can compute the distribution of the rate at

each quarter and thus set up our discrete pricing framework with 40 time steps.

(If the model is non-Gaussian, we could just discretise the continuous model).

We compute in the following the value of the chooser flexible cap at t = 0.

We note that for the chosen constants and for n = 40 the product is a

standard cap and the price can be computed explicitly for this Gaussian model.

This is done by using a change of numeraire technique with the bond prices of

Brigo and Mercurio (2001) Theorem 4.2.1 and the interest rate dynamics in the

T -forward measure given in Brigo and Mercurio (2001) Lemma 4.2.2. In our

case the resulting pricing formula gives for n = T = 40 the value at t = 0 of

0.2492, or 2492 basis points, which lies between the positive- and negative-biased

estimates obtained through our algorithm.
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Figure 1: The negative-biased estimate for the value of a caplet as a function

of the number n of caplets for the chooser flexible cap (topmost line). The 99%

confidence interval is plotted for each value of n as a vertical bar. Also shown

are the mean and confidence intervals for the value of an option with automatic

exercise on the first n exercise opportunities with positive payoff (flexible cap),

while the lowest line shows the exact value of a cap with n caplets on the first

n exercise dates.
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The basis functions for the linear regression model are chosen as:

Ψ1(ut, st) = 1

Ψ2(ut, st) = ut

Ψ3(ut, st) = st

Ψ4(ut, st) = (ut + st)2.

The numerical valuation then follows the three steps described above.

exercise negative-biased positive-biased relative 99% confidence

possibilities estimate estimate difference interval

1 0.03047 0.03049 0.0007 [0.03036 , 0.03055]

2 0.05598 0.05612 0.0025 [0.05581 , 0.05621]

3 0.07811 0.07858 0.0059 [0.07789 , 0.07869]

4 0.09783 0.09854 0.0073 [0.09756 , 0.09867]

5 0.11556 0.11641 0.0074 [0.11525 , 0.11655]

6 0.13146 0.13257 0.0084 [0.13112 , 0.13273]

7 0.14591 0.14725 0.0092 [0.14552 , 0.14741]

8 0.15896 0.16053 0.0099 [0.15854 , 0.16070]

9 0.17072 0.17248 0.010 [0.17027 , 0.17265]

10 0.18140 0.18332 0.010 [0.18092 , 0.18351]

15 0.22029 0.22301 0.012 [0.21966 , 0.22321]

20 0.23985 0.24341 0.014 [0.23910 , 0.24363]

25 0.24678 0.25086 0.016 [0.24597 , 0.25109]

30 0.24801 0.25230 0.017 [0.24717 , 0.25253]

35 0.24807 0.25243 0.017 [0.24724 , 0.25265]

40 0.24807 0.25244 0.017 [0.24724 , 0.25266]

The table above shows the numerical results for n, the number of caplets

that can be exercised, ranging from n = 1 to the maximal possible number

n = 40. From left to right we give the negative and positive-biased estimates of

the value at time t = 0, their relative difference and the 99% confidence interval

for the true price of the option.

The values we obtain for the chooser flexible cap are compared in Figure 1
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Figure 2: The confidence interval and negative-biased point estimate for the

value of the Swing option as a function of the number n of total exercise rights.

The lower line shows the exact value of an option with automatic exercise on

the first n exercise possibilities.

to the corresponding values of a flexible cap and a cap. It can be seen that the

difference between the negative- and positive-biased estimate of the value of the

chooser flexible cap is below 2% for all n despite the fact that the approximation

to the value function was obtained with a very simple regression architecture.

4.2 Swing option

The second example is a Swing option, a product in the energy market. There

are several variants of swing options. The one we focus on here is a stylized

version of swing options actually traded in the energy market. Its holder is

entitled to buy, over a specified period of T days, on each day a certain quantity

of energy/electricity, for a fixed price K. There is a constraint on the maximal

amount of energy that can be purchased over the lifetime of the Swing option,

in that energy can only be purchased on n days. Here we consider a period

of T = 1000 days and up to n = 100 exercise opportunities. We note that

in the electricity market there are no natural hedging instruments and we will

therefore compute the value of the swing contract as the expectation under a

given pricing measure.

There are a number of models that have been proposed for energy prices and
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any model could be used here. For simplicity we take a type of AR(1) model

for the logarithm of the energy price in which the price St on day t is taken to

be of the form:

logSt+1 = (1− k)(logSt−1 − µ) + µ+ σWt,(9)

where, Wt is a normally distributed random variable with unit variance. The

constants in the model are set to σ = 0.5, k = 0.9 and µ = 0, K = 0 and S1 = 1.

The basis functions for the linear regression model are chosen as:

Ψ1(st) = 1

Ψ2(st) = st.

The negative- and positive-biased estimates are otherwise obtained in the same

way as for the chooser flexible cap.

exercise negative-biased positive-biased relative 99% confidence

possibilities estimate estimate difference interval

1 4.777 4.790 0.002 [4.773 , 4.794]

2 9.024 9.085 0.006 [9.016 , 9.091]

3 12.970 13.094 0.009 [12.959 , 13.100]

4 16.786 16.899 0.006 [16.773 , 16.906]

5 20.455 20.573 0.005 [20.439 , 20.580]

10 37.334 37.531 0.005 [37.305 , 37.540]

15 52.713 52.999 0.005 [52.670 , 53.009]

20 67.105 67.513 0.006 [67.050 , 67.525]

30 93.742 94.507 0.008 [93.662 , 94.519]

40 118.457 119.611 0.009 [118.353 , 119.625]

50 141.832 143.345 0.010 [141.703 , 143.360]

60 164.112 166.020 0.011 [163.960 , 166.037]

70 185.511 187.711 0.011 [185.335 , 187.729]

80 206.045 208.682 0.012 [205.844 , 208.702]

90 225.900 228.965 0.013 [225.676 , 228.985]

100 245.157 248.630 0.013 [244.910 , 248.651]

The numerical results are shown in the table above and are displayed in

Figure 2. It can be seen that, despite the large number of timesteps, the relative
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difference between the negative- and positive-biased estimate remains below

1.5%. This illustrates that confidence intervals remain tight even when the

number of possible exercise dates is increased substantially, in agreement with

our theoretical finding in Theorem 2.

We remark that the models we have used in our examples are very simple

and the problems could be solved by other means. However the advantage of our

approach is that it allows prices to be obtained when the models are extended

to higher dimensions.

5 Proof of Theorem 1

We establish the duality result through a sequence of lemmas.

We introduce first the so-called continuation, or Q-value

Definition 8 The continuation value Q?,n
t is the expectation of the value func-

tion one timestep later,

Q?,n
t (x) =

 E
[
V ?,n

t+1 |Xt = x
]

t < T,

0 t = T.
(10)

The marginal continuation value ∆Q?,n
t is defined for n ≥ 1 as:

∆Q?,n
t = Q?,n

t −Q?,n−1
t .

For n = 1 this amounts to ∆Q?,1
t = Q?,1

t .

With this definition and (1) we can write the value function V ?,n
t with n re-

maining exercise opportunities as

V ?,n
t (x) = sup

t≤τn<T
E

[
Zτn +Q?,n−1

τn
|Xt = x

]
,

or as V ?,n
t (x) = max

{
Zt(x) +Q?,n−1

t (x), Q?,n
t (x)

}
.(11)

The second expression is easily seen as Zt+Q
?,n−1
t is the payoff Zt under exercise

of the n-th exercise opportunity at time t plus the expected future payoff with

the remaining n−1 exercise possibilities. The quantity Q?,n
t on the other hand is

the expected total payoff at time t under continuation without exercise at time

t. The optimal policy π? takes, by definition, the value-maximizing decision,

hence the value at time t is the maximum of the two quantities.
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The value process V ?,n
t is the Snell envelope of the payoff function Zt+Q

?,n−1
t

and is thus a supermartingale. The value process can then be written, using the

Doob decomposition as

V ?,n
t = V ?,n

0 +M?,n
t −A?,n

t ,

where M?,n
t is a martingale and A?,n

t a previsible increasing process, both zero

at t = 0. For n ≥ 1 we write ∆M?,n
t = M?,n

t −M?,n−1
t and likewise ∆A?,n

t =

A?,n
t −A?,n−1

t .

It is useful to restate the marginal value as an optimal stopping problem

that involves the Doob decomposition of the value process V ?,n−1
t .

Proposition 1 The marginal value ∆V ?,n
t is equal to

∆V ?,n
t = sup

t≤τ≤T
Et[Zτ −A?,n−1

τ+1 ] +A?,n−1
t ,

where A?,n−1
t is the previsible increasing process in the Doob decomposition of

V ?,n−1
t .

We note that here and throughout the paper we can apply the optional

stopping theorem as the stopping times we use are always bounded.

Proof of Proposition 1: Using (10), the martingale property of M?,n
t and the

optional stopping theorem

∆V ?,n
t = V ?,n

t − V ?,n−1
t

= sup
t≤τ≤T

Et

[
Zτ + Eτ [V ?,n−1

τ+1 ]
]
− V ?,n−1

t

= sup
t≤τ≤T

Et

[
Zτ + V ?,n−1

τ + (Eτ [V ?,n−1
τ+1 ]− V ?,n−1

τ )
]
− V ?,n−1

t .

As Eτ [V ?,n−1
τ+1 ]− V ?,n−1

τ is just the previsible part of the value process,

∆V ?,n
t = sup

t≤τ≤T
Et

[
Zτ + V ?,n−1

τ − (A?,n−1
τ+1 −A?,n−1

τ )
]
− V ?,n−1

t

= sup
t≤τ≤T

Et

[
Zτ + V ?,n−1

t + (M?,n−1
τ −M?,n−1

t )−

(A?,n−1
τ −A?,n−1

t )− (A?,n−1
τ+1 −A?,n−1

τ )
]
− V ?,n−1

t

= sup
t≤τ≤T

Et

[
Zτ + V ?,n−1

t + (M?,n−1
τ −M?,n−1

t )−

(A?,n−1
τ+1 −A?,n−1

t )
]
− V ?,n−1

t .
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Using the optional stopping theorem, Et[M?,n−1
τ −M?,n−1

t ] = 0 and hence

∆V ?,n
t = sup

t≤τ≤T
Et

[
Zτ + V ?,n−1

t − (A?,n−1
τ+1 −A?,n−1

t )
]
− V ?,n−1

t

= sup
t≤τ≤T

Et

[
Zτ −A?,n−1

τ+1

]
+A?,n−1

t ,

which completes the proof. �

The (n + 1)-th marginal value thus depends on the previsible part A?,n
t of the

value function with n exercise possibilities remaining. We can capture the fact

that the process A?,n
t only increases when continuation is the sub-optimal deci-

sion, in the following Lemma.

Lemma 1 The increments of the process A?,n
t can be expressed as

A?,n
t+1 −A?,n

t =
[
Zt −∆Q?,n

t

]
+
,

with the convention that [·]+ := max{·, 0}.

Proof. Using (11), the Doob decomposition allows us to write

A?,n
t+1 −A?,n

t = V ?,n
t −Q?,n

t

= max
{
Zt +Q?,n−1

t , Q?,n
t

}
−Q?,n

t

=
[
Zt −Q?,n

t +Q?,n−1
t

]
+

=
[
Zt −∆Q?,n

t

]
+
.

�

Using Proposition 1, we now show the intuitive fact that marginal values

decrease as the number of remaining exercise opportunities increases.

Proposition 2 The marginal value is a decreasing function of the number of

exercise opportunities remaining, in that for n ≥ 2,

∆V ?,n
t ≤ ∆V ?,n−1

t ,

Proof. The proof is by induction. We begin by proving the claim for n = 2.
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Using Proposition 1, the marginal value can be written as

∆V ?,2
t = sup

t≤τ≤T
Et[Zτ −A?,1

τ+1] +A?,1
t .

As A?,1
t is an increasing process, A?,1

τ+1 −A?,1
t ≥ 0, ∀ τ ≥ t and therefore

∆V ?,2
t = sup

t≤τ≤T
Et[Zτ −A?,1

τ+1] +A?,1
t

≤ sup
t≤τ≤T

Et[Zτ −A?,1
t ] +A?,1

t

= sup
t≤τ≤T

Et[Zτ ] = V ?,1
t = ∆V ?,1

t ,

as required.

For n > 2 we can assume by the inductive hypothesis that ∆V ?,n−1
t+1 ≤

∆V ?,n−2
t+1 . By Definition 8 this implies

∆Q?,n−1
t ≤ ∆Q?,n−2

t .

Hence, by Lemma 1,

A?,n−1
t+1 −A?,n−1

t =
[
Zt −∆Q?,n−1

t

]
+

≥
[
Zt −∆Q?,n−2

t

]
+

= A?,n−2
t+1 −A?,n−2

t .(12)

Using Proposition 1,

∆V ?,n
t = sup

t≤τ≤T
Et[Zτ −A?,n−1

τ+1 ] +A?,n−1
t

≤ sup
t≤τ≤T

Et[Zτ −A?,n−2
τ+1 ] +A?,n−2

t

= ∆V ?,n−1
t ,

completing the proof. �

Lemma 2 The marginal value process is a supermartingale. That is for all

n ≥ 1

∆V ?,n
t ≥ ∆Q?,n

t .
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Proof. This is a simple application of the Doob decomposition. As the difference

of two martingales is still a martingale we have that

∆M?,n
t = ∆V ?,n

t −∆V ?,n
0 + ∆A?,n

t ,

is a martingale. Taking conditional expectations of ∆M?,n
t+1 and equating we

have

∆V ?,n
t −∆Q?,n

t = ∆A?,n
t+1 −∆A?,n

t .

Using the same argument as in (12), we have that ∆Q?,n
t+1 ≥ ∆Q?,n

t , completing

the proof. �

Lemma 3 It holds that

∆V ?,n
t ≤ ∆Q?,n−1

t .

Proof. This uses Proposition 1, 2, and Lemma 1,

∆V ?,n
t = V ?,n

t − V ?,n−1
t

= sup
t≤τ≤T

Et[Zτ −A?,n−1
τ+1 +A?,n−1

t ]

= max
{
Zt − (A?,n−1

t+1 −A?,n−1
t ),

Et

[
sup

t+1≤τ≤T
Et+1[Zτ −A?,n−1

τ+1 +A?,n−1
t ]

]}
= max

{
Zt − (A?,n−1

t+1 −A?,n−1
t ),∆Q?,n

t − (A?,n−1
t+1 −A?,n−1

t )
}

= max
{
Zt − [Zt −∆Q?,n−1

t ]+,∆Q
?,n
t − (A?,n−1

t+1 −A?,n−1
t )

}
≤ max

{
∆Q?,n−1

t ,∆Q?,n
t

}
= ∆Q?,n−1

t ,(13)

which completes the proof. �

The following proposition is the basis for the computation of an upper bound

for the marginal values ∆V ?,n
t . We write 1A for the indicator of the event A.
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Proposition 3 The marginal value can be expressed as

∆V ?,n
0 = inf

0≤τ≤T
inf

M∈H0
E0

[
max

0≤t≤τ

(
Zt1{t<τ} + Et[∆V

?,n−1
t+1 ]1{t=τ} −Mt

)]
,

where τ is a stopping time and Mt a martingale with M0 = 0. Moreover, the

infimum is attained for the martingale ∆M?,n
t = M?,n

t −M?,n−1
t and stopping

time τ = min{t : A?,n−1
t+1 > 0}.

We prove the proposition in two parts.

Lemma 4 It holds for all stopping times τ bounded by T and all martingales

Mt ∈ H0 that

∆V ?,n
0 ≤ E0

[
max

0≤t≤τ

(
Zt1{t<τ} + Et[∆V

?,n−1
t+1 ]1{t=τ} −Mt

)]
.

Proof. Let ϑ, ϑ′ and τ denote stopping times. By using Proposition 1, splitting

at an intermediate stopping time and the fact that A?,n−1
t is increasing and zero

at time t = 0,

∆V ?,n
0 = sup

0≤τ≤T
E0[Zτ −A?,n−1

τ+1 ]

= sup
0≤ϑ≤τ

E0

[
(Zϑ −A?,n−1

ϑ+1 )1{ϑ<τ} + sup
τ≤ϑ′≤T

Eτ [Zϑ′ −A?,n−1
ϑ′+1 ]1{ϑ=τ}

]
≤ sup

0≤ϑ≤τ
E0

[
Zϑ1{ϑ<τ} + ( sup

τ≤ϑ′≤T
Eτ [Zϑ′ −A?,n−1

ϑ′+1 ] +A?,n−1
τ )1{ϑ=τ}

]
= sup

0≤ϑ≤τ
E0

[
Zϑ1{ϑ<τ} + ∆V ?,n

ϑ 1{ϑ=τ}
]
.

By Lemma 3, ∆V ?,n
ϑ ≤ Eϑ[∆V ?,n−1

ϑ+1 ]. Introducing a martingale M , which is

zero at t = 0,

∆V ?,n
0 ≤ sup

0≤ϑ≤τ
E0

[
Zϑ1{ϑ<τ} + Eϑ[∆V ?,n−1

ϑ+1 ]1{ϑ=τ}
]

= sup
0≤ϑ≤τ

E0

[
Zϑ1{ϑ<τ} + Eϑ[∆V ?,n−1

ϑ+1 ]1{ϑ=τ} −Mϑ

]
≤ E0 max

0≤t≤τ

(
Zt1{t<τ} + Et[∆V

?,n−1
t+1 ]1{t=τ} −Mt

)
.

�

To complete the proof of the first part of Proposition 3 it has to be shown

that the following inequality holds as well.
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Lemma 5 The marginal value can be bounded from below by

∆V ?,n
0 ≥ inf

0≤τ≤T
inf

M∈H0
E0

[
max

0≤t≤τ

(
Zt1{t<τ} + Et[∆V

?,n−1
t+1 ]1{t=τ} −Mt

)]
.

Moreover, the infimum is attained for τ? = min{t : A?,n−1
t+1 > 0} and ∆M?,n

t .

Proof. For any stopping time τ and martingale M ,

inf
0≤τ≤T

inf
M∈H1

0

E0

[
max

0≤t≤τ

(
Zt1{t<τ} + Et[∆V

?,n−1
t+1 ]1{t=τ} −Mn

t

)]
≤ E0

[
max

0≤t≤τ?

(
Zt1{t<τ?} + Et[∆V

?,n−1
t+1 ]1{t=τ?} −∆M?,n

t

)]
.

(14)

We define now a stopping time τ? by τ? = min{t : A?,n−1
t+1 > 0}. It will be shown

later in Lemma 6 that this stopping time is in fact equivalent to the stopping

time τ?
n−1 under an optimal policy. It clearly holds for τ? that A?,n−1

τ? = 0. It

follows then from Lemma 1 that

Eτ? [∆V ?,n−1
τ?+1 ] = Zτ? −A?,n−1

τ?+1 +A?,n−1
τ?

= Zτ? −A?,n−1
τ?+1 .

Using this in (14),

inf
0≤τ≤T

inf
M∈H1

0

E0

[
max

0≤t≤τ

(
Zt1{t<τ} + Et[∆V

?,n−1
t+1 ]1{t=τ} −Mn

t

)]
≤ E0

[
max

0≤t≤τ?

(
Zt −A?,n−1

t+1 −∆M?,n
t

)]
.

(15)

As A?,n−1
t is positive, by Proposition 1, ∆V ?,n

t ≥ supt≤τ≤T Et[Zτ − A?,n−1
τ+1 ].

Thus, by the Doob decomposition,

Zt −A?,n−1
t+1 ≤ ∆V ?,n

t

= ∆V ?,n
0 + ∆M?,n

t −∆A?,n
t .

Hence

Zt −A?,n−1
t+1 −∆M?,n

t ≤ ∆V ?,n
0 −∆A?,n

t ,

and, putting this into (15),

inf
0≤τ≤T

inf
M∈H1

0

E0

[
max

0≤t≤τ

(
Zt1{t<τ} + Et[∆V

?,n−1
t+1 ]1{t=τ} −Mn

t

)]
≤ E0

[
max

0≤t≤τ?

(
∆V ?,n

0 −∆A?,n
t

)]
.
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From Proposition 2 it is clear that ∆A?,n
t is a positive, increasing process. Hence

E0

[
max

0≤t≤τ?

(
∆V ?,n

0 −∆A?,n
t

)]
≤ ∆V ?,n

0 ,

which completes the proof. �

Finally we consider the optimal stopping time.

Lemma 6 The stopping time τ? = min{t : A?,n−1
t+1 > 0} is identical to the

stopping time τ?
n−1 under an optimal policy π?.

Proof. The optimal, value-maximizing policy exercises the option if the value

under exercise is greater than the continuation value. The continuation value

under n − 1 exercise opportunities is Q?,n−1
t . The value under exercise is

Zt + Q?,n−2
t . The option is therefore exercised under an optimal policy if

Zt +Q?,n−2
t > Q?,n−1

t , that is if Zt > ∆Q?,n−1
t . Thus the stopping time τ?

n−1 is

equal to

τ?
n−1 = min{t : Zt > ∆Q?,n−1

t }.

On the other hand the increments of the previsible process A?,n−1
t are, by

Lemma 1, equal to

A?,n−1
t+1 −A?,n−1

t =
[
Zt −∆Q?,n−1

t+1

]
+
.

Hence we have τ? = τ?
n−1 as desired. �

This completes the proof of Proposition 3.

It remains to show that Theorem 1 follows from Proposition 3. We recall

Definition 3,

∆V ↑,n
t = max

u∈(T \{τn−1,...,τ1})

(
Zu −Mu

)
,

where T = {t, . . . , T}. Using this notation it suffices to show that upper and

lower bounds are the same. We will show firstly in Lemma 7, that

E[∆V ↑,n
0 ] ≥ ∆V ?,n

0 .
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Secondly, we show that if the optimal policy π? and martingale M? are used in

the computation of ∆V ↑,n
t ,

E0[∆V
↑,n
0 ] ≤ ∆V ?,n

0 .

In fact we will be able to show with Lemma 7 and 8 that ∆V ↑,n
0 = ∆V ?,n

0 holds

almost surely in this latter case.

Lemma 7 For any martingale M with M0 = 0 and any policy π = {τn, . . . , τ1},

E0

[
∆V ↑,n

0

]
≥ ∆V ?,n

0

Proof. The proof is by induction. For n = 1 the claim is clearly true. For n > 1

we have

E0

[
∆V ↑,n

0

]
= E0

[
max

t∈({0,...,T}\{τn−1,...,τ1})

(
Zt −Mt

)]
= E0

[
max

{
max

0≤t<τn−1

(
Zt −Mt), max

u∈({τn−1+1,...,T}\{τn−2,...,τ1})

(
Zu −Mu

)}]
= E0

[
max

{
max

0≤t<τn−1

(
Zt −Mt),

max
u∈({τn−1+1,...,T}\{τn−2,...,τ1})

(
Zu −Mu +Mτn−1+1

)
−Mτn−1+1

}]
.(16)

The martingale Mu − Mτn−1+1 is clearly zero at time u = τn−1 + 1. By the

inductive hypothesis we can thus conclude that

Eτn−1+1

[
max

u∈({τn−1+1,...,T}\{τn−2,...,τ1})

(
Zu −Mu +Mτn−1+1

)]
≥ ∆V ?,n

τn−1+1.

Using the tower property,

Eτn−1

[
max

u∈({τn−1+1,...,T}\{τn−2,...,τ1})

(
Zu −Mu +Mτn−1+1

)]
≥ Eτn−1

[
∆V ?,n

τn−1+1

]
.

Hence there exists some FT -measurable random variable U with Eτn−1 [U ] = 0

such that

max
u∈({τn−1+1,...,T}\{τn−2,...,τ1})

(
Zu −Mu +Mτn−1+1

)
≥ Eτn−1 [∆V

?,n−1
τn−1+1] + U.

Using this in (16), we have

E0

[
∆V ↑,n

0

]
≥ E0

[
max

{
max

0≤t<τn−1

(
Zt −Mt),Eτn−1 [∆V

?,n−1
τn−1+1] + U −Mτn−1+1

}]
= E0

[
max

{
max

0≤t<τn−1

(
Zt −Mt),Eτn−1 [∆V

?,n−1
τn−1+1] + U +Mτn−1 −Mτn−1+1 −Mτn−1

}]
.
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By the properties of U and M , there exists a process Yt with Yt = 0 for t < τn−1

and Et−1[Yt] = 0 for t = τn−1 such that

E0

[
∆V ↑,n

0

]
≥ E0

[
max

{
max

0≤t<τn−1

(
Zt + Yt −Mt),Eτn−1 [∆V

?,n−1
τn−1+1] + Yτn−1 −Mτn−1

}]
= E0

[
max

0≤t≤τn−1

(
Zt1{t<τn−1} + Et[∆V

?,n−1
t+1 ]1{t=τn−1} − (Mt − Yt)

)]
.

Setting M ′
t = Mt − Yt for t ≤ τn−1, we see that M ′ is a martingale such that

E0

[
∆V ↑,n

0

]
≥ E0

[
max

0≤t≤τn−1

(
Zt1{t<τn−1} + Et[∆V

?,n−1
t+1 ]1{t=τn−1} −M ′

t

)]
.

As the choice of policy π and martingale M was arbitrary we have

E0

[
∆V ↑,n

t

]
≥ inf

0≤τ≤T
inf

M∈H0
E0

[
max

0≤t≤τn−1

(
Zt1{t<τn−1} + Et[∆V

?,n−1
t+1 ]1{t=τn−1} −Mt

)]
= ∆V ?,n

0 ,

where the last step follows from Proposition 3. �

Lemma 8 Under an optimal policy and martingale, the random variable ∆V ↑,n
t

is smaller than the true marginal value,

∆V ↑,n
0 ≤ ∆V ?,n

0 .

Together with Lemma 7 this establishes that the positive-biased estimate is

almost surely equal to the true marginal value under an optimal policy and

martingale.

Proof. The proof is by induction. For n = 1 and under an optimal martingale

M?, the random variable ∆V ↑,n
0 can be written as

∆V ↑,n
0 = max

0≤t≤T

(
Zt −M?

t

)
,

where M?
t = ∆M?,1

t = M?,1
t . By the Doob decomposition of the value function

∆V ?,1
0 = V ?,1

0 = sup0≤τ≤T E0[Zτ ],

V ?,1
t = V ?,1

0 +M?,1
t −A?,1

t ,

it is clear that Zt −M?,1
t ≤ V ?,1

0 −A?,1
t for all 0 ≤ t ≤ T . As A?,1

t is a positive,

increasing process, Zt −M?
t ≤ V ?,1

0 . Hence, for any path,

∆V ↑,1
0 = max

0≤t≤T

(
Zt −M?,1

t

)
≤ V ?,1

0 ,
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and the claim is proven for n = 1.

For n > 1 we have

∆V ↑,n
0 = max

t∈({0,...,T}\{τ?
n−1,...,τ?

1 })

(
Zt −M?

t

)
= max

{
max

0≤t<τ?
n−1

(
Zt −M?

t ), max
u∈({τ?

n−1+1,...,T}\{τ?
n−2,...,τ?

1 })

(
Zu −M?

u

)}
.

= max
{

max
0≤t<τ?

n−1

(
Zt −M?

t ),

max
u∈({τ?

n−1+1,...,T}\{τ?
n−2,...,τ?

1 })

(
Zu −M?

u +M?
τn−1+1

)
−M?

τn−1+1

}
.(17)

By the induction hypothesis,

∆V ↑,n−1
τn−1+1 = max

u∈({τ?
n−1+1,...,T}\{τ?

n−2,...,τ?
1 })

(
Zu −M?

u +M?
τn−1+1

)
≤ ∆V ?,n−1

τn−1+1,

and hence

∆V ↑,n
0 ≤ max

0≤t≤τ?
n−1

(
Zt1{t<τ?

n−1} + (∆V ?,n−1
t+1 +M?

t −M?
t+1)1{t=τ?

n−1} −M?
t

)
.

By definition of M?, when t = τ?
n−1, the increment M?

t+1 −M?
t is identical

to

∆M?,n−1
t+1 −∆M?,n−1

t = ∆V ?,n−1
t+1 − Et[∆V

?,n−1
t+1 ].

Thus ∆V ?,n−1
t+1 −M?

t+1 +M?
t = Et[∆V

?,n−1
t+1 ] for t = τ?

n−1 and

∆V ↑,n
0 ≤ max

0≤t≤τ?
n−1

(
Zt1{t<τ?

n−1} + Et[∆V
?,n−1
t+1 ]1{t=τ?

n−1} −∆M?,n
t

)
.

The proof then follows along the same lines as for n = 1. Using (15), the

positivity of A?,n
t and the inequality (16) from the Doob decomposition, we can

deduce that

∆V ↑,n
0 ≤ max

0≤t≤τ?
n−1

(
Zt −A?,n−1

t+1 −∆M?,n
t

)
≤ ∆V ?,n

0 ,

which completes the proof. Together with Lemma 7 it follows that ∆V ↑,n
0 =

∆V ?,n
0 almost surely for the optimal policy π? and martingale M?. �

6 Proof of Theorem 2

The proof of the error bound consists of two Propositions. The first examines

the effect of an error in the martingale approximation.
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Proposition 4 The effect of an error in the martingale approximation can be

bounded, for any policy π = {τn−1, . . . , τ1}, by

E0

[
max

t∈(T \{τn−1,...,τ1})

(
Zt −Mt

)]
− E0

[
max

t∈(T \{τn−1,...,τ1})

(
Zt −M?

t

)]
≤ 2

√
(4D2

V + σ2
k) T ,

where T = {0, . . . , T}.

The second Proposition bounds the remaining bias due to an error in the

optimal-policy approximation.

Proposition 5 The bias in the marginal value of using a possibly non-optimal

policy is bounded by

E0

[
max

t∈(T \{τn−1,...,τ1})

(
Zt −M?

t

)]
− E0

[
max

t∈(T \{τ?
n−1,...,τ?

1 })

(
Zt −M?

t

)]
≤ Dn−1

π ,

By definition of the bias Propositions 4 and 5 together prove Theorem 2.

To prove the first Proposition, the difference between the approximating and

correct martingale is defined as:

Definition 9 The process Rt is defined as the difference Rt = Mt−M?
t between

the optimal martingale M?
t and the approximation Mt.

To avoid the trivial bound we assume that the quantities DV and σk exist.

Lemma 9 For all n ∈ N, Rt is a martingale and R0 = 0. Moreover the second

moments of the increments Rt+1 −Rt are bounded by

Et[(Rt+1 −Rt)2] ≤ 4D2
V + σ2

k

and hence E0[(Rt)2] ≤ (4D2
V + σk

2) t.

Proof. The Monte Carlo approximation (8) to Et[∆V m
t+1] is given by

Em
t =

1
k

k∑
1

∆V m(Xi
t+1),

where Xi
t+1, i = 1, . . . , k are independent samples from the distribution of Xt+1

conditional on Xt.
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As both Mt and M?
t are martingales that are null at 0, Rt is a martingale

which is null at 0. The increment of the process can be written for τm ≥ t > τm−1

as:

Rt+1 −Rt =
(
Mt+1 −Mt

)
−

(
M?

t+1 −M?
t

)
=

(
∆V m

t+1 − Em
t

)
−

(
∆V ?,m

t+1 − Et[∆V
?,m
t+1 ]

)
=

(
∆V m

t+1 −∆V ?,m
t+1

)
+

(
Et[∆V

?,m
t+1 ]− Et[∆V m

t+1]
)

+
(
Et[∆V m

t+1]− Em
t

)
The first two terms in brackets are each bounded in absolute value by DV .

Note that the last term Et[∆V m
t+1]−Em

t is the error incurred by the Monte Carlo

approximation Em
t to Et[∆V m

t+1]. This error has mean 0, a second moment

bounded by σ2
k and is independent of

(
∆V m

t+1 − ∆V ?,m
t+1

)
. Thus the second

moment of the increment is bounded by Et[(Rt+1−Rt)2] ≤ 4D2
V +σk

2 and the

claim follows. �

Now our first Proposition can be proven.

Proof of Proposition 4: Using the definition of Rt it follows that

E0

[
max

t∈(T \{τn−1,...,τ1})

(
Zt −Mt

)]
= E0

[
max

t∈(T \{τn−1,...,τ1})

(
Zt −M?

t −Rt

)]
≤ E0

[
max

t∈(T \{τn−1,...,τ1})

(
Zt −M?

t

)]
+ E0

[
max

t∈(T \{τn−1,...,τ1})
|Rt|

]
≤ E0

[
max

t∈(T \{τn−1,...,τ1})

(
Zt −M?

t

)]
+ E0

[
max
t∈T

|Rt|
]

≤ E0

[
max

t∈(T \{τn−1,...,τ1})

(
Zt −M?

t

)]
+

(
E0

[
max

0≤t≤T
(Rt)2

]) 1
2 .(18)

As Rt is a martingale, (Rt)2 is a nonnegative submartingale (by the existence of

DV and σk). Thus Doob’s submartingale inequality (e.g., Shiryaev 1984 p.464)

can be applied to obtain

E0[ max
0≤t≤T

(Rn
t )2] ≤ 4 E0[(Rn

T )2].

As M? is the martingale at which the infimum of the marginal value is attained

it follows that by combining (18) and (19), and applying Lemma 9, we have

E0

[
max

t∈(T \{τn−1,...,τ1})

(
Zt −Mt

)]
− E0

[
max

t∈(T \{τn−1,...,τ1})

(
Zt −M?

t

)]
≤ 2

(
E0

[
(Rn

T )2
]) 1

2

≤ 2
√

(4D2
V + σk

2)T ,
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which completes the proof. �

We now prove the second Proposition. First we define a loss function

Definition 10 The loss function L : S → R is defined at time t for policy

π = {τn, τn−1, . . . , τ1} as

Lm
t =


[
Zt − Et[∆V

?,m
t+1 ]

]
+

t < τm[
Et[∆V

?,m
t+1 ]− Zt

]
+

t = τm

0 t > τm

If m = 0 we define L0
t to vanish identically.

Lemma 10 The difference in the value of m(t) remaining exercise opportuni-

ties under an optimal policy π? and policy π = {τn, . . . , τ1} is equal to

V
?,m(t)
t − V

π,m(t)
t = Et

[ T∑
u=t

Lm(u)
u

]
,

where m(t) is the number of remaining exercise opportunities at time t. Hence

m(t) is the smallest natural number such that t ≤ τm under policy π = {τn, . . . , τ1}.

Proof. The proof is by induction. The claim clearly holds for t = T . We

assume in the following that the claim holds for t+1. There are m(t) remaining

exercise opportunities at time t. Either t = τm(t), if the m-th remaining exercise

opportunity is used by policy π at time t, or t < τm(t), if the continuation

decision is made. In this latter case the value under policy π is V π,m(t)
t =

Et[V
π,m(t)
t+1 ]. The value under the optimal, value-maximizing policy π? is on the

other hand equal to

V
?,m(t)
t = max{Zt + Et[V

?,m(t)−1
t+1 ],Et[V

?,m(t)
t+1 ]}.

Hence

V
?,m(t)
t − V

π,m(t)
t = Et[V

?,m(t)
t+1 − V

π,m(t)
t+1 ] + [Zt − Et[∆V

?,m(t)
t+1 ]]+

= Et[V
?,m(t)
t+1 − V

π,m(t)
t+1 ] + L

m(t)
t .
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As the exercise opportunity is not used at time t, m(t+1) = m(t) and it follows

by the induction hypothesis that

V
?,m(t)
t − V

π,m(t)
t = Et[V

?,m(t+1)
t+1 − V

π,m(t+1)
t+1 ] + L

m(t)
t

= Et

[
Et+1[

T∑
u=t+1

Lm(u)
u ]

]
+ L

m(t)
t

By the tower property the r.h.s. is equal to Et[
∑T

u=t L
m(u)
u ] and the claim

follows.

If on the other hand t = τm(t), then the exercise opportunity is used under

policy π and V π,m(t)
t = Zt + Et[V

π,m(t)−1
t+1 ]. The value under the optimal policy

is again

V
?,m(t)
t = max{Zt + Et[V

?,m(t)−1
t+1 ],Et[V

?,m(t)
t+1 ]}.

Hence for t = τm(t)

V
?,m(t)
t − V

π,m(t)
t = Et[V

?,m(t)−1
t+1 − V

π,m(t)−1
t+1 ] + [Et[∆V

?,m(t)
t+1 ]− Zt]+

= Et[V
?,m(t)−1
t+1 − V

π,m(t)−1
t+1 ] + L

m(t)
t .

As the exercise opportunity was used under policy π at time t, m(t + 1) =

m(t)− 1. The claim follows now as in the case t < τm(t). �

The following lemma completes the proof of Proposition 5.

Lemma 11 If the martingale M?
t is used in the computation of ∆V ↑,n

0 ,

∆V ↑,m(t)
t ≤ ∆V ?,m(t)

t +
T∑

u=t

Lm(u)−1
u ,

along any path. By m(t) with m(t) = n − 1 we denote again the number of

remaining exercise rights under policy π = {τn−2, . . . , τ1}.

Proof. For n = 1 there is nothing to prove as L0 vanishes identically and,

according to Lemma 8,

∆V ↑,1
t ≤ ∆V ?,1

t .

For n > 1, using (17) and

∆V ↑,n−1
τn−1+1 = max

u∈({τ?
n−1+1,...,T}\{τ?

n−2,...,τ?
1 })

(
Zu −M?

u +M?
τn−1+1

)
,
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it follows that

∆V ↑,n
t = max

t≤u≤τn−1

(
(Zu −M?

u)1{u<τn−1} + (∆V ↑,n−1
u+1 −M?

u+1)1{u=τn−1}
)
.

= max
t≤u≤τn−1

(
Zu1{u<τn−1} + (∆V ↑,n−1

u+1 −M?
u+1 +M?

u)1{u=τn−1} −M?
u

)
.

By the definition of m(t) it is clear that m(u) = n for u ≤ τn−1 and m(u) =

n − 1 for u = τn−1 + 1. By the inductive hypothesis we have that ∆V ↑,n−1
τn−1+1 ≤

∆V ?,n−1
τn−1+1 +

∑T
u=τn−1+1 L

m(u)−1
u . As furthermore ∆V ?,n−1

u+1 − M?
u+1 + M?

u =

Et[∆V
?,n
u+1] and M?

u = ∆M?,n
u for t ≤ u ≤ τn−1, it suffices to show that

max
t≤u≤τn−1

(
Zu1{u<τn−1} + Eu[∆V ?,n−1

u+1 ]1{u=τn−1} −∆M?,n
u

)
≤ ∆V ?,n

t +
τn−1∑
u=t

Ln−1
u .(19)

As A?,n−1
t is a nonnegative increasing process, we have

max
t≤u≤τn−1

(
Zu1{u<τn−1} + Eu[∆V ?,n−1

u+1 ]1{u=τn−1} −∆M?,n
u

)
≤ max

t≤u≤τn−1

(
(Zu −A?,n−1

u+1 )1{u<τn−1} +

(Eu[∆V ?,n−1
u+1 ]−A?,n−1

u )1{u=τn−1} −∆M?,n
u

)
+A?,n−1

τn−1
.(20)

From Lemma 1, A?,n−1
t+1 −A?,n−1

t = [Zt − Et[∆V
?,n−1
t+1 ]]+. Hence

A?,n−1
τn−1

−A?,n−1
t =

(τn−1)−1∑
u=t

Ln−1
u .

On the other hand we can deduce that

Eτn−1 [∆V
?,n−1
(τn−1)+1]−A?,n−1

τn−1
= Zτn−1 −A?,n−1

τn−1+1 + [Eτn−1 [∆V
?,n−1
τn−1+1]− Zτn−1 ]+

= Zτn−1 −A?,n−1
τn−1+1 + Ln−1

τn−1
.

Putting the last two observations back into equation (20), it follows that

max
t≤u≤τn−1

(
(Zu −A?,n−1

u+1 )1{u<τn−1} + (Eu[∆V ?,n−1
u+1 ]−A?,n−1

u )1{u=τn−1} −∆M?,n
u

)
+A?,n−1

τn−1

≤ max
t≤u≤τn−1

(
Zu −A?,n−1

u+1 −∆M?,n
u

)
+

τn−1∑
u=t

Ln−1
u .(21)

In a similar way to (16), it follows from Proposition 1 that

max
t≤u≤τn−1

(
Zu −A?,n−1

u+1 −∆M?,n
u

)
≤ ∆V ?,n

t ,

and hence, combining (21) and (20), it follows that

max
t≤u≤τn−1

(
Zu1{u<τn−1} + Eu[∆V ?,n−1

u+1 ]1{u=τn−1} −∆M?,n
u

)
≤ ∆V ?,n

t +
τn−1∑
u=t

Ln−1
u .

This shows that (19) holds and hence completes the proof of Lemma 11. �
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Proposition 5 then follows from the two preceding lemmas. Taking expecta-

tions in Lemma 11 we have that

Et[∆V
↑,n
t ] ≤ ∆V ?,n

t + Et[
T∑

u=t

Lm(u)−1
u ].

The last term is, according to Lemma 10, for t = 0 equal to Dn−1
π = V ?,n−1

0 −

V π,n−1
0 . Hence Proposition 5 is proven. This completes the proof of Theorem

2.
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