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LASSO Isotone for High-Dimensional
Additive Isotonic Regression

Zhou FANG and Nicolai MEINSHAUSEN

Additive isotonic regression attempts to determine the relationship between a multi-
dimensional observation variable and a response, under the constraint that the estimate
is the additive sum of univariate component effects that are monotonically increasing.
In this article, we present a new method for such regression called LASSO Isotone
(LISO). LISO adapts ideas from sparse linear modeling to additive isotonic regression.
Thus, it is viable in many situations with high-dimensional predictor variables, where
selection of significant versus insignificant variables is required. We suggest an algo-
rithm involving a modification of the backfitting algorithm CPAV. We give a numerical
convergence result, and finally examine some of its properties through simulations. We
also suggest some possible extensions that improve performance, and allow calculation
to be carried out when the direction of the monotonicity is unknown.

Supplemental materials are available online for this article.
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1. INTRODUCTION

We often seek to uncover or describe the dependence of a response on a large number
of covariates. In many cases, parametric and in particular linear models may prove overly
restrictive. Additive modeling, as described for instance by Hastie and Tibshirani (1990),
is well known to be an useful generalization.

Suppose we have n observations available of the pair (Xi, Yi), where Yi ∈ R is a re-
sponse variable, and Xi = (X

(1)
i , . . . ,X

(p)
i ) ∈ Rp is a vector of covariates.

In additive modeling, we typically assume that the data are well approximated by a
model of the form

Yi = µ +
p∑

k=1

fk

(
X

(k)
i

)
+ εi ,
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LASSO ISOTONE 73

where µ is a constant intercept term, and ε = (ε1, . . . , εn) is a random error term, assumed
independent of the covariates and identically distributed with mean zero. For every covari-
ate k = 1, . . . , p, each component fit fk is chosen from a space of univariate functions Fk .
Usually, these spaces are constrained to be smooth in some suitable sense, and in fitting,
we minimize the L2 norm of the error,

1
2

∥∥∥∥∥Y − µ −
p∑

k=1

fk

(
X(k)

)
∥∥∥∥∥

2

:= 1
2

n∑

i=1

(

Yi − µ −
p∑

k=1

fk

(
X

(k)
i

)
)2

,

under the constraint that fk ∈ Fk , for each k = 1, . . . , p. In the case that ε is assumed to be
normal, this can be directly justified as maximizing the likelihood.

Work on such methods of additive modeling have produced a profuse array of tech-
niques and generalizations. In particular, Bacchetti (1989) suggested the additive isotonic
model. With the additive isotonic model, we are interested in tackling the problem of con-
ducting regression under the restriction that the regression function is of a prespecified
monotonicity with respect to each covariate. Such restrictions may be sensible whenever
there is subject knowledge about the possible influence or relationship between predictor
and response variables. A broad survey of the subject may be found in the book by Barlow
et al. (1972). It turns out that in the univariate case, the pool adjacent violators algorithm
(PAVA), as first suggested by Ayer et al. (1955), allows rapid calculation of a solution to
the least squares problem using this restriction alone. By doing so, we retain only the or-
dinal information in the covariates, and hence obtain a result that is invariant under strictly
monotone transformations of the data. In addition, the form of the regression, being simply
a maximization of the likelihood, means that apart from the monotonicity constraint, we
do not put on any regularization or smoothing.

Bacchetti (1989) built on this, by generalizing to multiple covariates. Here, the regres-
sion function is considered to be a sum of univariate functions of specified monotonicity.
Fitting is conducted via the cyclic pool adjacent violators (CPAV) algorithm, in the style of
a backfitting procedure built around PAVA—that is, cycling over the covariates, the partial
residuals using the remaining covariates are repeatedly fitted to the current one, until con-
vergence. Later theoretical discussion from Mammen and Yu (2007) outlined some positive
properties of this procedure.

Nevertheless, CPAV, like many types of additive modeling, can fail in the high-
dimensional case—for instance, once p > n. The particular problem is that the least
squares criterion loses strictness of convexity when the number of covariates is large, since
it becomes easy for allowed component fits in some covariates to combine in the training
data so as to replicate component fits in unrelated covariates. It is hence impossible for the
CPAV to distinguish between two radically different regression functions since they give
the same fitted values on the training dataset. Some success might be achieved, though, if
the solution sought is sparse, in the sense that most of the covariates have little or no effect
on the response. Then, if the identity of the significant variables could be found, the CPAV
could be conducted on this much smaller set of covariates. However, exhaustive search to
identify this sparsity pattern would be rapidly prohibitive in terms of computational cost,
scaling exponentially in the number of covariates.
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74 Z. FANG AND N. MEINSHAUSEN

In the context of parametric linear regression, it has emerged recently that such sparse
regression problems can be dealt with by use of an L1-norm based penalty in the opti-
mization. This can solve the identifiability problem and achieve good predictive accuracy.
Tibshirani (1996), Donoho (2006), among others, have identified several significant em-
pirical and theoretical results to support this ‘LASSO’ estimator, while Osborne, Presnell,
and Turlach (2000), Friedman et al. (2007), and others have invented fast algorithms for
calculating both individual estimates and full LASSO solution paths.

Generalization of the L1 penalization principle to nonparametric regression can also
lead to success with additive modeling (Avalos, Grandvalet, and Ambroise 2003). For ex-
ample, recent work on this subject includes SpAM (Ravikumar et al. 2007), which de-
scribes the application of the group LASSO to general smoothers, and high-dimensional
additive modeling with smoothness penalties (Meier, van de Geer, and Bühlmann 2009),
which follows similar principles, using a spline basis.

In this article, we propose the LASSO-Isotone (LISO) estimator. By modifying the ad-
ditive isotonic model to include a LASSO-style penalty on the total variation of component
fits, we hope to conduct isotonic regression in the sparse additive setting. This article thus
builds on the work of Ravikumar et al. (2007) and Bacchetti (1989).

The LISO is similar to the degree 0 case of the LASSO knot selection of Osborne,
Presnell, and Turlach (1998), which is also identical to the fused LASSO of Tibshirani
et al. (2005), if we replace the covariate matrix with ordered Haar wavelet bases, and do
not consider coefficient differences for coefficients corresponding to different covariates. It
is also similar to the univariate problem considered by Mammen and van de Geer (1997).
In contrast to each of these procedures, however, we allow the additional imposition of a
monotonicity constraint, producing an algorithm similar in complexity to the CPAV.

In Section 2 we shall describe the LISO optimization, and in Section 3 we will discuss
algorithms for computation for fairly large n and p. We will discuss the effect of the reg-
ularization, and then in Section 4 suggest an important extension. Finally, in Section 5 we
will explore its performance using some simulation studies. Proofs of theorems are left for
the Appendix as part of online supplementary material.

2. THE LASSO-ISOTONE OPTIMIZATION

The term ‘isotonic’ means the functions are assumed to be increasing. However, an as-
sumption of decreasing functions can be accommodated easily for any estimator by apply-
ing the algorithm using reversed sign observed covariates. The monotonically increasing
function f̃ thus found can then be transformed to be a decreasing function estimate in the
original covariates by

f̂ (x) = f̃ (−x).

Hence, let us assume without loss of generality that we are conducting regression con-
strained to monotonically increasing regression functions. Let us first define some terms.

Let Y ∈ Rn be the response vector. X = (X(1), . . . ,X(p)) ∈ Rn×p is the matrix of co-
variates.
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LASSO ISOTONE 75

For a specified X, for k = 1, . . . , p, let Fk be the space of bounded, univariate, and
monotonically increasing functions, that have expectation zero on the kth covariate. −Fk

is then the same for monotonically decreasing functions:

Fk :=
{

f : R → R
∣∣∣

n∑

i=1

f
(
X

(k)
i

)
= 0 and ∃U,V s.t. ∀a < b,U ≤ f (a) ≤ f (b) ≤ V

}

.

Additive isotonic models involve sums of functions from these spaces. It is simple to
observe that each Fk is a convex half-space that is closed except at infinity, and so as
a result the space of sums of these functions must also be convex and closed except at
infinity.

Definition 1: We define the LASSO-Isotone (LISO) estimator for a particular value of
tuning parameter λ ≥ 0 as f̂λ(x) = µ̂ + ∑p

k=1 f̂k,λ(x), where µ̂, a constant, and f̂k,λ ∈ Fk

∀k together minimize the LISO loss

Lλ(µ,f1, . . . , fp) := 1
2

∥∥∥∥∥Y − µ −
p∑

k=1

fk

(
X(k)

)
∥∥∥∥∥

2

+ λ

p∑

k=1

#(fk). (2.1)

Here ‖ ·‖ denotes the empirical L2 norm, while #(fk) denotes the total variation of fk ,
which for fk ∈ Fk can be calculated as

#(fk) = sup
x∈R

fk(x) − inf
x∈R

fk(x).

We have introduced a mean zero constraint on the fitted components for identifiability,
since we can easily add a constant term to any component fit fk , and deduct it from another
component, and still arrive at the same final regression function. Under this constraint,
it follows trivially that µ̂ must equal the sample mean of the response, and hence (2.1)
reduces to the case of optimizing over f1, . . . , fp with Y = 0.

As with the LASSO, the LISO objective function is the sum of a log-likelihood term and
a penalty term. It is clear that the domain is convex and, considered in the space of allowed
solutions, the objective itself is convex and bounded below. Indeed, outside a neighborhood
of the origin, both terms in the objective are increasing, so a bounded solution exists for all
values of λ. However, the objective may not be strictly convex, so this solution may not be
unique.

The log-likelihood term does not consider the values of fk except at observed values of
each covariate, while the total variation penalty term, assuming monotonicity, only takes
account of the upper and lower bounds of the covariate-wise regression function—indeed,
for optimality, these bounds must be attained at the extremal observed values of the appro-
priate covariate, with the solution flat beyond this region. Thus, given any one minimizer
to Lλ, another fit with the same function values at observed covariate points, interpolating
monotonically between them, will have the same value of Lλ, and so also be a LISO solu-
tion. This means that we can equivalently consider optimization in the finite-dimensional
space of fitted values f̂k(X

(k)).
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76 Z. FANG AND N. MEINSHAUSEN

For simplicity, we will represent found LISO solution components by the corresponding
right-continuous step function with knots only at each observation. For the remainder of
this article, we shall consider uniqueness and equivalence in terms of having equal values
at the observed X(k).

The total variation penalty shown here has been previously suggested for regression in
the article by Mammen and van de Geer (1997), though in that case, the focus was on
smoothing of univariate functions, without a monotonicity constraint.

3. LISO BACKFITTING

Considering the representation of the LISO in terms of step functions, the LISO op-
timization for a given dataset can be viewed as ordinary LASSO optimization for a lin-
ear model, constrained to positive coefficients, using an expanded design matrix X̃ ∈
Rn×p(n−1), where X̃ = (X̃(1) · · · X̃(p)). Each X̃(k) ∈ Rn×(n−1), k = 1, . . . , p, contains
n−1 step functions in the kth covariate, which form a basis for the vector fk(X

(k)), and so
isotonic functions in that covariate. The coefficients β optimized over then represent step
sizes.

Such a construction was suggested by Osborne, Presnell, and Turlach (1998), among
others. Under this reparameterization of the problem, existing LASSO algorithms for linear
regression may be applied, with a modification to restrict solutions to nonnegative values.
In particular, the least angle regression algorithm of Osborne, Presnell, and Turlach (2000)
and Efron et al. (2004) is effective, since short cuts exist for calculating the necessary
correlations.

On the other hand, the high dimensionality of X̃ means that standard methods become
very costly in higher dimensions, both in terms of required computation, but especially
in terms of the storage requirements associated with very large matrices. Hence, we must
consider more specialized algorithms for such cases. One such approach involves back-
fitting, and is workable due to the simple form of the solution when restricted to a single
covariate.

3.1 THRESHOLDED PAVA

In the p = 1 case, it turns out that we have an exceptionally simple way to calculate the
LISO estimate, which we will later use to establish a more general multivariate procedure.

With no LISO penalty (i.e., λ = 0) and a single covariate, the LISO optimization is
equivalent to the standard univariate isotonic regression problem. In this case, the log-
likelihood residual sum of squares term is strictly convex, and so, as a strictly convex
optimization on a convex set, a unique solution exists. Trivially, the solution must also
be bounded. In fact, there exists, as described by Barlow et al. (1972) and attributed to
Ayer et al. (1955), a fast algorithm for calculating the solution—the pool adjacent violators
algorithm (PAVA).

Hence, defining f̂λ as the solution to optimization (2.1) for λ, we have f̂0 ≡ f̂PAVA. The
following theorem describes the solutions for other values of λ:
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LASSO ISOTONE 77

Theorem 1. Given f̂PAVA, the LISO solution for λ ≥ 0, p = 1 is the Winsorized PAVA
fit,

f̂>Aλ,<Bλ := max(min(f̂PAVA,Bλ),Aλ),

with Aλ,Bλ thresholding constants that are piecewise linear, continuous, and monotone
(increasing for Aλ, decreasing for Bλ) functions of λ.

Specifically, if

2λ ≥
n∑

i=1

|f̂PAVA(Xi) − Y |, (3.1)

then Aλ = Bλ = Y .
Otherwise, Aλ,Bλ are the solutions to

n∑

i=1

(f̂PAVA(Xi) − Bλ)+ = λ, (3.2)

n∑

i=1

(Aλ − f̂PAVA(Xi))+ = λ. (3.3)

Corollary 1. Let π be a permutation taking 1, . . . , n to indices that put the covariate
in ascending order. Then if

λ ≥ max
m

∣∣∣∣∣

m∑

i=1

(
Yπ(i) − Y

)
∣∣∣∣∣, (3.4)

we have that f̂λ ≡ Y .

Remark 1: The PAVA algorithm itself can accommodate observation weights, as well
as tied values in the covariates. In terms of the LISO, working with unequal observation
weights demands that we work with weighted residual sums of squares. For (3.3) and (3.2),
then, weights should be introduced in the summation. Tied values should be also dealt with
by merging the relevant steps, and weighting them according to the number of data points
at that covariate observation.

3.2 BACKFITTING ALGORITHM

In general, however, simple thresholding fails to solve the LISO optimization in higher
dimensions, due to correlations between steps in different covariates. We can, however,
extend the 1D algorithm to higher dimensions by applying it iteratively as a backfitting
algorithm.

In other words, we define LISO-backfitting by the following steps, see Algorithm 1.
Step 8 is performed to avoid accumulation of calculation errors, but may be avoided to

reduce computation time.
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78 Z. FANG AND N. MEINSHAUSEN

Algorithm 1 LISO-Backfitting.

1: Take µ̂ = Y , Y ⇐ Y − µ̂.
2: Set m = 0.
3: Initialize component fits (f1, . . . , fp) as identically 0, or as the estimate for a different

value of λ, storing these as the n × p marginal fitted values.
4: repeat
5: f m ⇐ (f1, . . . , fp).
6: m ⇐ m + 1.
7: for k = 1 to p (or a random permutation) do
8: Recalculate residuals ri ⇐ Yi − ∑p

k=1 fk(X
(k)
i ), i = 1, . . . , n.

9: Refit conditional residual {ri + fk(X
(k)
i )}ni=1 using X(k) by PAVA, producing

f̃k(X
(k)
i ), for i = 1, . . . , n.

10: Calculate thresholds Aλ, Bλ from λ and f̃k by Theorem 1.
11: Adjust component fit fk(X

(k)
i ) ⇐ f̃k,>Aλ<Bλ(X

(k)
i ).

12: end for
13: until sufficient convergence is achieved, through considering f m and f m−1.
14: Interpolate fk between the samples X

(k)
i and construct f̂λ.

Theorem 2. For f m = (µ,f m
1 , . . . , f m

p ), the sequence of states resulting from the
LISO-backfitting algorithm, Lλ(f

m) converges to its global minimum with probability 1.
Specifically, if there exists a unique solution to (2.1), f m converges to it.

Remark 2: A proof of this is available via a theorem in the article by Tseng (2001).
However, a simpler alternative proof is available in the case of random permutations, and
for completeness is given in the Appendix.

Remark 3: If there is no unique solution, the backfitting algorithm may not neces-
sarily converge, though the LISO loss of each estimate will converge monotonically to the
minimum. In addition, because the objective function is locally quadratic, as the change in
the LISO loss converges to zero, the change in the estimate after each individual refitting
cycle converges also to zero.

Remark 4: Moreover, defining X
(k)
(i) as the ith smallest value of X(k), if a certain

individual step in the final functional fit

fk

(
X

(k)
(i)

)
− fk

(
X

(k)
(i−1)

)

has a value of zero in all solutions to the LISO minimization, then, after a finite number of
steps, all results from the algorithm must take that step exactly to zero.

This is because steps being estimated as zero in a LISO solution implies that the par-
tial derivative of the LISO objective function Lλ in the above individual step direction is
greater than zero when evaluated at this solution. The partial derivatives are continuous,
so as the algorithm converges, the partial derivatives associated with zero steps eventually
be above 0 and remain so. But then, this can only be the case following a thresholded
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LASSO ISOTONE 79

PAVA calculation involving the covariate associated with that step if that single covariate
optimization takes the step exactly to zero.

Convergence of the algorithm can be checked for by a variety of methods. One of the
simplest is to note that due to the nature of the repeated optimization, the LISO loss will
always decrease in each step, and we will converge toward the minimum. Hence, one viable
stopping rule would be to cease calculating when the LISO loss of the current solution
drops by too small an amount. Alternatively, we can exploit Remark 3, and monitor the
change in the results in each cycle, stopping when this becomes small.

3.3 CHOICE OF REGULARIZATION PARAMETER

It will be always necessary to choose a tuning parameter λ to facilitate appropriate fit-
ting. As with the LASSO, too high a tuning parameter will shrink the fits toward zero.
Indeed, consideration of Corollary 1 shows that, with Y = 0, and π (k) defined as a permu-
tation that puts the kth covariate into ascending order, a choice of λ greater than

max
k=1,...,p,

m=1,...,n

∣∣∣∣∣

m∑

i=1

Yπ (k)(i)

∣∣∣∣∣

will result in a zero fit in every thresholded PAVA step starting from zero, and hence a zero
fit overall for the LISO.

Conversely, too small a value of λ will also lead to improper fitting. This arises from
two sources. First, as with the LASSO, the noise term may flood the fit, as the level of
thresholding is not sufficient to suppress correlations of the noise with the covariate step
functions—the columns of X̃. Second, λ has a role in terms of fit complexity, with a small
value of λ implying that the LISO, when restricted to the true covariates, would select
more steps. This means a less sparse signal in the implied LASSO problem, so it becomes
in turn more likely for selected columns of X̃ to be correlated with columns belonging to
irrelevant covariates, hence producing spurious fits in the other covariates.

These effects are illustrated in Figure 1, in which we have generated X, with n = 100,
p = 200, according to a uniform distribution, and produced Y as the sum of k = 5 of the

Figure 1. Effects of changing the regularization parameter in the noiseless case. n = 100,p = 200. Each line
represents how an individual covariate’s estimate changes as λ varies, with the solid lines for the true covariates,
while the dashed lines denote spurious fits on irrelevant variables. The online version of this figure is in color.

D
o
w

n
lo

ad
ed

 b
y
 [

N
ic

o
la

i 
M

ei
n
sh

au
se

n
] 

at
 0

1
:5

7
 2

6
 A

p
ri

l 
2
0
1
2
 



80 Z. FANG AND N. MEINSHAUSEN

Figure 2. Effects of changing the regularization parameter in the noisy case. n = 100, p = 200, SNR = 5. We
show again in the first graph the total variation of each covariate estimate as λ alters, with solid lines for the truly
important covariates, while the dashed lines denote spurious fits on irrelevant variables. The second graph shows
the MSE from a 10-fold cross-validation procedure with ±1 s.d. in dashes, as well as the true MSE on a new set
of data as the thick line. The online version of this figure is in color.

covariates. In other words, f is the sparse sum of linear functions. We give the full paths
of fits in terms of, first, the total variation of fitted components #(fk), and second, the
number of component steps in each covariate,

∣∣{i :fk

(
X

(k)
(i)

)
,= fk

(
X

(k)
(i−1)

)}∣∣.

Of particular note is that, unlike the LASSO, even without noise, the size of the basis
of step functions and the nonsparsity of the true signal mean that as λ → 0, we do not con-
verge to the true sparsity pattern. However, with higher λ, the number of steps we choose
diminishes rapidly, and as a result we can remove the spurious fits and simultaneously not
mistakenly estimate the relevant covariates as zero.

In Figure 2, we add an independent normal noise component to Y , with variance chosen
so that the signal-to-noise ratio SNR = 5. In the new Total Variation plot, we see that the
noise component has added additional noise fits in some of the irrelevant variables, and
as in the LASSO these vanish for higher λ. Since the spurious fits vanish before the true
covariate components do, we see that recovery of the true sparsity pattern is still possible
in this case.

Now, in the above examples, we worked with the true sparsity pattern being assumed
known. In real problems, we need to estimate the correct value of λ directly from the data.
To do this, with the goal of recovering the correct sparsity pattern, is generally understood
to be very difficult. (See, e.g., Meinshausen and Bühlmann (2006) for some attempts.)
However, as suggested in literature from Tibshirani (1996) onward, cross-validation is ef-
fective for minimizing predictive error, and is illustrated by the second graph of Figure 2.
Here, we calculate CV error from a 10-fold cross-validation. We may then take the λ that
minimizes the average mean squared error across the folds. If we desire a simpler model,
we can, as is often suggested, take the largest λ that achieves a CV value within 1 s.d. of
the minimum. Examining the thick line for the true predictive MSE shows that such a pro-
cedure, while not perfect, can give good results. In minimizing predictive error, however,
we do still fit some irrelevant covariates as nonzero, a phenomenon previously observed
with the LASSO in the article by Leng, Lin, and Wahba (2006).
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LASSO ISOTONE 81

Now, unlike a LARS-like approach, LISO backfitting will only give us the solution for
an individual choice of λ. However, CV can still be practical, because coordinate-wise
minimization can be very fast for sparse problems, something already observed for the
normal LASSO (Friedman et al. 2007). We can further reduce the computational cost by
noting that LISO solutions for similar values of λ are likely to be similar, and hence use
the result for one value of λ as a start point for the calculation for a nearby value of tuning
parameter. This is especially effective if we order the λ values we need to calculate in
decreasing order, since large λ solutions are more sparse and so faster to calculate.

4. ADAPTIVE LISO

A variety of extensions and variations of the basic LISO procedure may be proposed,
that may offer improvements in some circumstances. For instance, bagging (Breiman 1996)
may be used with the LISO, by aggregating the results of applying the LISO to a number
of bootstrap samples through any of a variety of methods. However, this method is not
reliably a great improvement and will almost inevitably reduce the degree of sparsity in
the fit, for any given degree of regularization.

More valuable is to observe that a potential problem with the LISO is that it treats
the constituent steps of each fit individually. In other words, there is no difference, in the
eyes of the optimization, between a fit that involves single step fits in a large number of
covariates, and a single more complex fit in one covariate. As a result, the method may not
achieve a great deal of sparsity in terms of covariates used, an issue we may want to rectify
through making the algorithm in some sense recognize the natural grouping of steps in the
step function basis.

Many existing solutions to this issue, such as that of Huang, Horowitz, and Wei (2009),
involve explicitly or implicitly a Group LASSO (Yuan and Lin 2006) calculation to produce
this grouping effect. Incorporating this into LISO is possible, though it may produce a
greatly increased computational burden. Instead, we shall apply ideas from Zou (2006).

Consider the following two-stage procedure: we first conduct an ordinary LISO opti-
mization, arriving at an initial fit (µ,f 0

1 , . . . , f 0
p ). Then, we conduct a second LISO proce-

dure, this time introducing covariate weights w1, . . . ,wp based on the first fit, and use the
results of this as the output. We define the Adaptive LISO as the implementation of this,
with wk = 1/#f 0

k , for k = 1, . . . , p. See Algorithm 2.
The analogy to the Adaptive LASSO is that we apply a relaxation of the shrinkage

for covariates with large fits in the initial calculation, and strengthen the shrinkage for
covariates with small fits—indeed, omitting entirely from consideration covariates initially
fitted as zero. Usually, more than one reweighted calculation is not required.

The Adaptive LISO encourages grouping of the underlying LASSO optimization be-
cause large steps contribute to relaxation of other steps in the same covariate. In addition,
it means that we in general require less regularization of true fits in order to shrink ir-
relevant covariates to zero, through the concavity of the implied overall optimization, to
which we are essentially calculating a Local Linear Approximation (Zou and Li 2008).
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82 Z. FANG AND N. MEINSHAUSEN

Algorithm 2 Adaptive LISO.

1: Calculate initial fit f 0 using LISO. (For instance, using Algorithm 1.)
2: Set wk = 1/#(f 0

k ), for k = 1, . . . , p.
3: Calculate, using, for example, Algorithm 1,

arg min
µ,f1,...,fp

1
2

∥∥∥∥∥Y −µ−
p∑

k=1

fk

(
X(k)

)
∥∥∥∥∥

2

+
p∑

k=1

wk#(fk), with fk ∈ Fk, k = 1, . . . , p.

4: If necessary, set f 0 ≡ f , and repeat from Step 2.

We will also always enhance sparsity through this procedure; indeed, the fact that we re-
ject straightaway previously zero variables ensures the computational complexity of the
method is usually at most equal to that of repeating the original LISO procedure for each
iteration.

It is, however, not clear what would be the best way to choose the tuning parameter
introduced with each iteration of the process. We note that the discussants to the article
by Zou and Li (2008) have recommended a scheme based on individual prediction error
minimizing cross-validation at every step, and our empirical studies suggest that this can
pose significant improvements over the basic LISO. In our experiments, we also implement
a variant of the adaptive procedure, LISO-SCAD, where instead the weights are calculated
with an implied group-wise SCAD penalty. LISO-SCAD and LISO-Adaptive hence both
fit under a broad group of possible LISO-LLA procedures.

Remark 5: An additional application for the Adaptive LISO is in the case where
the direction or the presence of monotonicity for the model function component in each
covariate is not known. One possible heuristic of dealing with this situation is to choose
signs by a preliminary correlation check with the response. However, correlation is not
invariant under general monotonic transformations, and examples exist where covariates
have positive marginal effects, but, due to correlations between the covariates, turn out to
have negative contributions in the final model.

Now, it is a well-known fact (Itô 1993) that functions of bounded variation have a unique
Jordan decomposition

f ≡ f + + f −

into monotonically increasing and decreasing functions, such that #(f ) = #(f +) +
#(f −). It follows that the monotonicity-relaxed form of the LISO, the total variation pe-
nalized estimate, can be dealt with by Algorithm 1 by including as ‘covariates’ both the
original covariates and sign-reversed versions of themselves. The original covariate is used
to estimate f + while the reversed covariate finds f −. These can then be combined to give
an estimate. In this scheme, LISO can be thought of as setting the penalty on the decreas-
ing component to infinity, and that on the increasing component to a finite quantity. For a
related approach, see the work of Tibshirani, Hoefling, and Tibshirani (2010).

A possible variation to the LISO-Adaptive scheme above, then, is to conduct first a
non-monotonic total variation penalized fit, consider the fit in terms of its increasing and
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LASSO ISOTONE 83

decreasing components, and then compute separate weights to be placed on the increas-
ing and decreasing components in a second-stage fit. We see in this case the same effect
seen in the adaptive LISO, where we have strengthened shrinkage of small function fits
toward zero compared to the total variation penalized fit. However, in addition, fits found
to be monotonic in the first stage will remain monotonic in the second stage, while func-
tions with small negative or positive components in the initial fit will be shrunk toward a
monotonically increasing or decreasing function, respectively.

5. NUMERICAL RESULTS

We will present a series of numerical examples designed to illustrate the effectiveness of
the LISO in handling additive isotone problems. The experiments are calculated in R, using
a standard desktop workstation. The full path solutions are found using a LISO modifica-
tion to the Lars algorithm (Osborne, Presnell, and Turlach 2000), while the larger compar-
ison studies and fits are conducted using an implementation of the backfitting algorithm,
with a logarithmic grid for the tuning parameter.

5.1 EXAMPLE LISO FITS

The following examples, conducted on single datasets, illustrate the performance of the
algorithm.

5.1.1 Boston Housing Dataset

The Boston Housing dataset, as detailed by Harrison and Rubinfeld (1978), is a dataset
often used in the literature to test estimators; see, for example, Hastie, Tibshirani, and
Friedman (2003). The dataset comprises n = 506 observations of 13 covariates, plus one
response variable, which is the median house prices at each observation location. The re-
sponse is known to be censored at the value 50, while the covariates range from crime
statistics to discrete variables like index of accessibility to highways. We use here the ver-
sion included in the R MASS library, though we shall discard the indicator covariate chas,
for ease of presentation. (Experiments suggest that this variable does not have a great effect
on the response, in any case.)

As suggested by Ravikumar et al. (2007), we will test the selection accuracy of the
model by adding U(0,1) irrelevant variables. We add 28, so that our final p = 40. Since
signs are not known, we will apply the sign discovery version of the LISO from Remark 5,
by first conducting a non-monotonic total variation fit, and then a weighted second fit.
Tuning parameters are chosen by two 10-fold cross-validations.

Our selected model, finally, is

Y = µ + f1(crim) + f2(nox) + f3(rm) + f4(dis)

+ f5(tax) + f6(ptratio) + f7(lstat) + ε.
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84 Z. FANG AND N. MEINSHAUSEN

Figure 3. Fitted component functions on the Boston Housing dataset, for covariates originally present in the
data plus three others. The dashed line shows the selected model after the first LISO step, while the solid black
line shows the final result of the adaptive sign finding procedure. The single-step fit produced additional nonzero
fits in some of the artificial covariates, which are not shown, while the two-step procedure fit all of them as zero.
The online version of this figure is in color.

The remaining covariates are judged to have an insignificant effect on the response,
with zero regression fits. f3 was found to be monotonically increasing, f1 slightly non-
monotonic, and the remaining functions monotonically decreasing. The full results are
shown in Figure 3.

We see in our experiments that for higher values of λ, we successfully remove all the
irrelevant variables, and end up with only a small number of selected variables to explain
the response. However, in the one-step procedure, the amount of shrinkage required is often
large. With cross-validation as a criterion, we choose a λ that involves some irrelevant
variables as well, though these are in general small in magnitude. A second step greatly
improves the model selection characteristics, as well as creating monotonicity which is
often absent in the first step—observe especially the case for nox.

It is interesting to contrast our fit with the findings from using SpAM (Ravikumar et al.
2007). Bearing in mind that our problem was in some sense more difficult, since we had
12 original covariates instead of 10 (rad and zn were not included in the SpAM study),
and 28 artificial covariates instead of 20, our findings are largely similar. In addition to the
covariates selected in SpAM, we add a fairly large effect from nox, and smaller effects
in dis and tax. The most significant fits on rm and lstat are very similar, though the
LISO fit is clearly less smooth. However, while almost all of the fits from SpAM exhibit
non-monotonicity, the LISO fit we have found is monotonic, aside from a small step fit
near 0 in crim.

The non-monotonicity found in crim may seem problematic, given the interpretation
of that covariate as a crime rate. However, the small increasing step found near crim= 0
might be reasonable if such areas are qualitatively different from others. On the other hand,
perhaps it would be reasonable to directly impose a monotonicity constraint instead.
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LASSO ISOTONE 85

5.1.2 Artificial Dataset

We are also interested in the success of LISO in correctly selecting variables for varying
levels of n and p. We adopt the following setup: we generate pairs X ∈ Rn×p,Y ∈ Rn by

Xij ∼ Uniform(−1,1),

Yi = 2
(
X

(1)
i

)2
+ + X

(2)
i + sign

(
X(3)

)∣∣X(3)
i

∣∣1/5 + 2I{X(4)
i >0} + εi ,

with n = 1024, p = 1024, independent εi ∼ N(0,1). The covariates are then centered and
standardized to have mean zero and variance 1, and Y is centered to have mean zero.

For p′ = 32,64,128,256,512,1024, n′ = 5,10,15, . . . , we then take as X′, Y ′ subsets
of X,Y corresponding to the first p′ columns of X, and random samples without replace-
ment of n′ rows of X,Y . Hence we consider the problem of correctly finding four true
variables, from among p′ potential ones, based on n′ observations. We quantify the suc-
cess of LISO by looking at the proportion of 50 replications where the algorithm, for at
least one value of λ, produces an estimate where the true covariates have at least one step
while the other covariates are taken to zero. (We adopt this framework so as to reduce the
additional noise from generating a complete new random dataset with each attempt.)

Figure 4 gives these results. As we can see, as in a variety of LASSO-type algorithms
(Wainwright 2009), there is a sharp threshold between success and failure in recovery of
sparsity patterns as a function of n. Moreover, as we increase p exponentially, the required
number of observations n increases much more slowly, thus implying that p / n recovery
is possible.

Figure 5 gives an example of LISO fits arising from this simulation. As can be seen
from the marginal plot of the data points, with such a small amount of data, it can be very
difficult to find the true model function. The dashed lines show the results of the LISO
under the minimum regularization required for correct sparsity recovery—note the high
level of shrinkage required to shrink the other variables to zero. This shrinkage exhibits
itself as not only a thresholding on the ends of the component fits, which we have seen in

Figure 4. Probabilities of correct sparsity recovery with four true nonlinear but monotonic covariates, SNR = 4.
Each line shows how the recovery probability changes as the sample size n changes for a single value of p, taking
values 25, . . . ,210.
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86 Z. FANG AND N. MEINSHAUSEN

Figure 5. Example LISO covariate fits, for n = 180, p = 1024. The true component functions are given by
the thick line, while the dashed line gives the raw LISO fit for the smallest amount of regularization required to
bring spurious fits in irrelevant covariates to zero. The solid black line shows a fit made by the Adaptive LISO,
using tuning parameters found by cross-validation. The fitted and true model functions for all 1020 remaining
covariates are all constant zero. The circles are marginal plots of the data points. The online version of this figure
is in color.

the univariate case, but also an additional loss of complexity in the middle parts of each
component fit. The Adaptive LISO, as the solid black line, avoids this shrinkage and thus
greatly improves the fit while still keeping the correct sparsity pattern recovery. As an
added bonus, we get good sparsity recovery results here with the Adaptive LISO using
merely the cross-validated tuning parameter values.

5.2 COMPARISON STUDIES

We shall now compare LISO to a range of other procedures in some varying contexts.
Varying f between scenarios, consider generating pairs X,Y by, for each repetition,

X
(j)
i ∼ Uniform(−1,1), i = 1, . . . , n, j = 1, . . . , p,

εi ∼ N(0,1), i = 1, . . . , n,

Yi = f (Xi) + σεi , i = 1, . . . , n.

One hundred repetitions were done of each combination of model and noise level, with
σ chosen to give SNR = 1,3, or 7, plus one further case where we have SNR = 3 but X is
instead generated to have stronger correlation between the covariates, as a rescaled (to the
range (−1,1)) version of '(Z),Z ∼ N(0,(), with (ij = 2−|i−j |.
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LASSO ISOTONE 87

For comparison, we will compare the performance of LISO and LISO-LLA (both Adap-
tive and SCAD), calculated using the backfitting algorithm, to

• Random Forests (RF), from Breiman (2001). A tree-based method using aggregation
of trees generated using a large number of resamplings.

• Multiple Adaptive Regression Splines (MARS), from Friedman (1991), using the
earth implementation in R. A method using greedy forward/backward selection
with a hockey-stick-shaped basis. We use a version restricted to additive model fitting.

• Sparse Additive Models (SpAM), from Ravikumar et al. (2007). A similar group-
LASSO-based method using soft thresholding of component smoother fits.

• Sparsity Smoothness Penalty (SSP), from Meier, van de Geer, and Bühlmann (2009).
A group-LASSO-based method using two penalties—a sparsity penalty and an ex-
plicit smoothness penalty.

For the choice of tuning parameter in all algorithms, we take the value that minimizes
the prediction error on a separate validation set of the same size as the training set. (Note
that in the case of SSP, due to the slowness of finding two separate tuning parameters, we
instead perform a small number of initial full validation runs for each scenario. We then
plug in the averaged smoothness tuning parameter in all following runs, optimizing for
only the sparsity parameter.)

We record both the mean value across runs of the MSE on predicting a new test set
(generated without noise), and, in brackets, the mean relative MSE, defined for the kth
algorithm on each individual run as

MSEk
Relative := MSEk

minj=1,...,7 MSEj
.

We show in bold text the best performing estimator in each scenario.

5.2.1 All Components Linear

In this case, we have the response being just a scaled sum of k = 5 randomly chosen
covariates, plus a noise term. n = 200, p = 50 overall. In the test set, the variance of the
response (and hence the MSE of a constant prediction) was approximately 1.7. See Table 1.

Table 1. Test set MSE (and relative MSE) for linear scenario.

Algorithm SNR = 7 SNR = 3 SNR = 1 SNR = 3, Correlated

LISO 0.113 (4.70) 0.186 (3.33) 0.358 (2.41) 0.203 (3.43)
LISO-Adaptive 0.070 (2.94) 0.118 (2.18) 0.242 (1.62) 0.134 (2.27)
LISO-SCAD 0.113 (4.71) 0.186 (3.33) 0.437 (3.00) 0.202 (3.41)
SpAM 0.082 (3.29) 0.149 (2.57) 0.346 (2.24) 0.159 (2.59)
SSP 0.026 (1.00) 0.061 (1.00) 0.167 (1.02) 0.065 (1.00)
RF 0.286 (11.97) 0.319 (5.85) 0.504 (3.36) 0.361 (6.21)
MARS 0.146 (6.28) 0.354 (6.72) 1.027 (6.91) 0.417 (7.19)
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88 Z. FANG AND N. MEINSHAUSEN

Because of the sparsity and additivity in the data, all LASSO-like methods do better
than RF, a pattern that continues in all of these simulation studies. Indeed, due to the ran-
dom selection of covariates in the RF algorithm, the presence of spurious covariates seems
to produce a phenomenon of excess shrinkage, which can be clearly seen in plots of fitted
values versus response values. Using the scaling corrections provided in the R implemen-
tation improves things, but not to a great extent. MARS, similarly, has difficulty in finding
the correct variables. With such large p, the set of possible hockey stick bases MARS
has to search through is very large, and hence the underlying greedy stepwise selection
component of the algorithm is in general unsuccessful at handling this problem.

Among the LASSO-like methods, perhaps unsurprisingly, the SSP method performs by
far the best, owing to the large degree of smoothness in the true model function. LISO-
Adaptive is second best, however, beating SpAM even though it does not have an internal
smoothing effect. The basic LISO method itself underperforms, perhaps because it does
not strongly enforce sparsity among the original covariates.

Unexpectedly, LISO-SCAD performs fairly equivalently to the LISO itself in this and
all following simulations. A likely explanation is that for sufficient regularization to take
place to take spurious covariates to zero, the penalty function is such that the solution lies
mostly on the part of the penalty where it is identical to the original total variation penalty.

The introduction of a moderate amount of correlation does not greatly affect the perfor-
mance of any of the algorithms.

5.2.2 Mixed Powers

In this case, the response has a more complex relation to the covariates:

Yi =
5∑

k=1

fk

(
X

(ak)
i

)
+ σεi ,

f1(x) = sign(x + C1)|x + C1|0.2,

f2(x) = sign(x + C2)|x + C2|0.3,

f3(x) = sign(x + C3)|x + C3|0.4,

f4(x) = sign(x + C4)|x + C4|0.8,

f5(x) = x + C5.

In this case, we have again n = 200,p = 50. C1, . . . ,C5 are small shifts, randomly gen-
erated as Uniform(−1/4,1/4), and a1, . . . , a5 are covariates randomly chosen without re-
placement. In the test set, the variance of the response was approximately 2.6. See Table 2.

With the new, nonlinear model function, the LISO and LISO-SCAD now perform
equally as well as the SSP, while the adaptive LISO performs significantly better, being
the best in almost all runs. All four methods outperform SpAM, and greatly outperform
RF and MARS.

In this case, the explanation is that for fractional powers, the component functions are
relatively flat in the extremes of the covariate range, with most of the variation occurring
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LASSO ISOTONE 89

Table 2. Test set MSE (and relative MSE) for mixed powers scenario.

Algorithm SNR = 7 SNR = 3 SNR = 1 SNR = 3, Correlated

LISO 0.128 (1.49) 0.230 (1.50) 0.459 (1.41) 0.255 (1.50)
LISO-Adaptive 0.088 (1.01) 0.160 (1.00) 0.352 (1.06) 0.177 (1.01)
LISO-SCAD 0.128 (1.49) 0.229 (1.49) 0.587 (1.82) 0.254 (1.50)
SpAM 0.157 (1.83) 0.267 (1.75) 0.539 (1.68) 0.285 (1.69)
SSP 0.126 (1.47) 0.226 (1.49) 0.429 (1.33) 0.252 (1.51)
RF 0.358 (4.21) 0.450 (2.96) 0.721 (2.26) 0.495 (2.96)
MARS 0.319 (3.78) 0.678 (4.54) 1.936 (6.32) 0.783 (4.71)

in the middle of the range. SpAM and SSP are unable to capture the sharp transition point
of the small root functions without introducing inappropriate variability at the ends of the
fit, and hence both perform significantly worse than previously. The LISO-based meth-
ods, however, do not explicitly smooth the fit and only threshold the extremes. Being thus
adapted to this sort of function, they actually improve their performance in proportional
terms relative to the variance of the test set.

5.2.3 Mixed Powers, Large p

In this scenario, our model is the same as before, save that we have many more spurious
covariates, resulting in n = 200, p = 200. The variance of the test response is unchanged
at approximately 2.6. See Table 3.

In this case, LISO preserves its superiority. Due to the effect of high dimensionality,
all algorithms see their performance decline—except the adaptive LISO, which has an
increased MSE of less than 3% in the low noise case. This is due to the adaptive step, which
retains a very sparse fit, picking the relevant variables even as the number of predictors
grows.

6. DISCUSSION

We have presented here a method of extending ideas from LASSO on linear models to
the framework of nonparametric estimation of isotonic functions. We have found that in

Table 3. Test set MSE (and relative MSE) for large p mixed powers scenario.

Algorithm SNR = 7 SNR = 3 SNR = 1 SNR = 3, Correlated

LISO 0.166 (1.89) 0.283 (1.86) 0.638 (1.78) 0.286 (1.84)
LISO-Adaptive 0.090 (1.00) 0.156 (1.00) 0.384 (1.01) 0.160 (1.01)
LISO-SCAD 0.169 (1.93) 0.292 (1.91) 0.935 (2.71) 0.296 (1.90)
SpAM 0.201 (2.32) 0.329 (2.17) 0.779 (2.21) 0.331 (2.14)
SSP 0.156 (1.78) 0.274 (1.80) 0.604 (1.73) 0.274 (1.78)
RF 0.504 (5.86) 0.588 (3.86) 0.992 (2.84) 0.593 (3.84)
MARS 0.805 (9.27) 1.704 (11.49) 4.707 (13.84) 1.763 (11.60)
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90 Z. FANG AND N. MEINSHAUSEN

many contexts, it inherits the behavior of the LASSO in that it allows sparse estimation in
high dimensions. By using our backfitting procedure, we have also shown empirically that
it can be very competitive with many current methods, both in terms of computational time
and memory requirements, and in terms of predictive accuracy. The precise criteria that
govern its success would require further work, and it would be interesting to see if similar
LASSO-style oracle results apply.

In addition, we find that a LLA/adaptive scheme is highly effective and efficient at
improving the algorithm in a two-step approach, producing sparser results and very high
predictive accuracy. Further adaptations allow the LISO method to be used when mono-
tonicity is assumed but the direction of the monotonicity is not known. To the authors’
knowledge, this has not been attempted previously in this type of problem, and it would
be interesting to see if LLA and similar concave penalty procedures can produce effective
replacements for the group LASSO in the underlying calculation of nonparametric LASSO
generalizations.

SUPPLEMENTARY MATERIALS

R-package for LISO: R-package LISO containing code to perform the methods de-
scribed in the article. (liso_0.2.tar.gz, GNU zipped tar file)

Proofs of theorems: Pdf document containing appendix with proofs of theorems in the
article. (lisoappendix.pdf, PDF document)
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