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ESTIMATING THE PROPORTION OF FALSE NULL
HYPOTHESES AMONG A LARGE NUMBER OF

INDEPENDENTLY TESTED HYPOTHESES

BY NICOLAI MEINSHAUSEN AND JOHN RICE

ETH Zürich and University of California, Berkeley

We consider the problem of estimating the number of false null hypothe-
ses among a very large number of independently tested hypotheses, focusing
on the situation in which the proportion of false null hypotheses is very small.
We propose a family of methods for establishing lower 100(1 − α)% confi-
dence bounds for this proportion, based on the empirical distribution of the
p-values of the tests. Methods in this family are then compared in terms of
ability to consistently estimate the proportion by letting α → 0 as the num-
ber of hypothesis tests increases and the proportion decreases. This work is
motivated by a signal detection problem that occurs in astronomy.

1. Introduction. An example that motivated our work is afforded by the
Taiwanese–American Occultation Survey (TAOS), which we now briefly describe.
The TAOS will attempt to detect small objects in the Kuiper Belt, a region of the
solar system beyond the orbit of Neptune. The Kuiper Belt contains an unknown
number of objects (KBOs), most of which are believed to be so small that they
do not reflect enough light back to Earth to be directly observed. The purpose of
the TAOS project is to estimate the number of these KBOs down to the typical
size of cometary nuclei (a few kilometers) by observing occultations. The idea
of the occultation technique is simple to describe. One monitors the light from a
collection of stars that have angular sizes smaller than the expected angular sizes
of comets. An occultation is manifested by detecting the partial or total reduction
in the flux from one of the stars for a brief interval when an object in the Kuiper
Belt passes between it and the observer. Four dedicated robotic telescopes will au-
tomatically monitor 2000–3000 stars every clear night for several years and their
combined results will be used to test for an occultation of each star approximately
every 0.20 seconds, yielding on the order of 1011 tests per year. The number of
occultations expected per year ranges from tens to a few thousands, depending on
what model of the Kuiper Belt is used. Having conducted a large number of tests,
it is then of interest to estimate the number of occultations, or the occultation rate,
since this will provide information on the distribution of KBOs. Note that in this
context we are not so much interested in which particular null hypotheses are false
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as in how many are. The TAOS project was further described by Liang et al. [8]
and Chen et al. [3].

We will base our analysis on the distribution of the p-values of the hypothesis
tests. Let {Gθ , θ ∈ #} be some family of distributions, where θ is possibly infinite-
dimensional and G0(t) = t with 0 ∈ # is the uniform distribution on [0,1]. All
p-values are assumed to be independently distributed according to

Pi ∼ Gθi , i = 1, . . . , n.

If a null hypothesis is true, the distribution of its p-value is uniform on [0,1] and
Pi ∼ G0. We suppose that neither the family {Gθ (t), θ ∈ #} nor the parameter vec-
tor (θ1, . . . , θn) is known, except from the fact that G0 corresponds to the uniform
distribution.

The proportion of null hypotheses that are false (the fraction of occultations in
the TAOS example) is denoted by

λ = n−1
n∑

i=1

1{θi %= 0}.(1)

Our goal is to construct a lower bound λ̂ with the property

P(λ̂ ≤ λ) ≥ 1 − α(2)

for a specified confidence level 1 − α. Such a lower bound would allow one to as-
sert, with a specified level of confidence, that the proportion of false null hypothe-
ses is at least λ̂. The global null hypothesis that there are no false null hypotheses
can be tested at level α by rejecting when λ̂ > 0.

Our construction is closely related to that by Meinshausen and Bühlmann [9],
which treats the case of possibly dependent tests, but with an observational struc-
ture that allows the use of permutation arguments that are not available in our case.
Another estimate was examined by Nettleton and Hwang [10], but it does not have
a property like (2). Our methodology is related to that of controlling the false dis-
covery rate [1, 13], but the goals are different—we are not so much interested in
which particular hypotheses are false as in how many are. However, we note that
an estimate of the number of the false null hypotheses can be usefully employed
in adaptive control of the false discovery rate [2]. In a modification of the original
FDR method, Storey [13] also estimated the proportion of false hypotheses. The
empirical distribution of p-values was used by Schweder and Spjøtvoll [11] to es-
timate the number of true null hypotheses; the methods used there are different
than ours and do not provide explicit lower confidence bounds. The methods in
this paper extend a proposal of Genovese and Wasserman [7]. We also relate our
results to those of Donoho and Jin [6].
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2. Theory and methodology. The estimate hinges on the definition of bound-
ing functions and bounding sequences.

Let U be uniform on [0,1]. Let Un(t) be the empirical cumulative distribu-
tion function of n independent realizations of a random variable with distribution
U . For any real-valued function δ(t) on [0,1] which is strictly positive on (0,1),
define Vn,δ as the supremum of the weighted empirical distribution

Vn,δ := sup
t∈(0,1)

Un(t) − t

δ(t)
.(3)

DEFINITION 1. A bounding function δ(t) is any real-valued function on [0,1]
that is strictly positive on (0,1). A series βn,α is called a bounding sequence for a
bounding function δ(t) if, for a constant level α:

(a) nβn,α is monotonically increasing with n;
(b) P(Vn,δ > βn,α) < α for all n.

The definition of a bounding sequence depends neither on the unknown pro-
portion of false null hypotheses nor on the unknown distribution G(t) of p-values
under the alternative.

One is interested in the case where a proportion λ of all hypotheses are false
null hypotheses. Denote the empirical distribution of p-values by

Fn(t) := n−1
n∑

i=1

1{Pi ≤ t}.(4)

Estimating the proportion of false null hypotheses can be achieved by bounding the
maximal contribution of true null hypotheses to the empirical distribution function
of p-values. We give a brief motivation. Suppose for a moment that there are only
true null hypotheses. The expected fraction of p-values less than or equal to some
t ∈ (0,1) equals, in this scenario, U(t) = t . The realized fraction Un(t) is, on the
other hand, frequently larger than t . However, using Definition 1, the probability
that Un(t) is larger than t +βn,αδ(t) is bounded by α simultaneously for all values
of t ∈ (0,1). The proportion of p-values in the given sample that are in excess of
the bound t + βn,αδ(t) can thus be attributed to the existence of a corresponding
proportion of false null hypotheses and Fn(t) − t − βn,αδ(t) is hence a low-biased
estimate of λ. As the bound for the contribution of true null hypotheses holds
simultaneously for all values of t ∈ (0,1), a lower bound for λ is obtained by
taking the supremum of Fn(t) − t − βn,αδ(t) over the interval (0,1). A refined
analysis shows that an additional factor 1/(1 − t) can be gained when estimating
the proportion of false null hypotheses.

DEFINITION 2. Let βn,α be a bounding sequence for δ(t) at level α. An esti-
mate for the proportion λ of false null hypotheses is given by

λ̂ = sup
t∈(0,1)

Fn(t) − t − βn,αδ(t)

1 − t
.(5)
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This estimate is indeed a lower bound for λ, as shown in the following theorem.

THEOREM 1. Let βn,α be a bounding sequence for δ(t) at level α and let λ̂
defined by (5). Then

P(λ̂ ≤ λ) ≥ 1 − α.(6)

PROOF. The distribution of p-values Fn is bounded by Fn(t) ≤ λ + (1 −
λ)Un0(t), where n0 = (1 −λ)n and Un0(t) is the empirical distribution of n0 inde-
pendent Uniform(0,1)-distributed random variables. Thus

P(λ̂ > λ) ≤ P

(
sup

t∈(0,1)

λ+ (1 − λ)Un0(t) − t − βn,αδ(t)

1 − t
> λ

)
(7)

= P

(
sup

t∈(0,1)
(1 − λ)

(
Un0(t) − t

) − βn,αδ(t) > 0
)

(8)

= P

(
sup

t∈(0,1)
Un0(t) − t − n

n0
βn,αδ(t) > 0

)
.(9)

Whereas nβn,α is monotonically increasing, nβn,α/n0 ≥ βn0,α and the proof fol-
lows by property (b) in Definition 1. !

2.1. Asymptotic control. Instead of finite-sample control, it is sometimes more
convenient to resort to asymptotic control. A sequence βn,α is said to be an as-
ymptotic bounding sequence if βn,α satisfies condition (a) from Definition 1 and,
additionally, a modified condition (b′),

lim sup
n→∞

P(Vn,δ > βn,α) < α,(10)

where Vn,δ is defined as in (3). If we suppose that the absolute number of false
null hypotheses nλ is growing with n, that is, nλ → ∞ for n → ∞, then for an
asymptotic bounding sequence,

lim sup
n→∞

P(λ̂ ≤ λ) ≥ 1 − α.

Asymptotic control is typically useful in the following situation. For a given
bounding function δ(t) and two sequences an, bn, consider weak convergence of

anVn,δ − bn
D→ L(11)

to a distribution L. Any sequence βn,α that satisfies the monotonicity condition (a)
of Definition 1 and, additionally, βn,α ≥ a−1

n (L−1(1 − α) + bn), is thus an asymp-
totic bounding sequence at level α.

As an important example, consider the bounding function δ(t) = √
t (1 − t).

The following lemma is due to Jäschke and can be found in [12], page 599, Theo-
rem 1 (18).
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LEMMA 1. Let an = √
2n log logn and bn = 2 log logn + 1

2 log log logn −
1
2 log 4π . Then

an sup
t∈(0,1)

Un(t) − t√
t (1 − t)

− bn
D→ E2,(12)

where E is the Gumbel distribution E(x) = exp(− exp(−x)).

REMARK 1. The convergence in (12) is in general slow. Nevertheless, the
result is of interest here. First, the number of tested hypotheses is potentially very
large (e.g., 1012 in the TAOS setting described in the Introduction). Moreover,
the slow convergence is mainly caused by values of t that are of order 1/n. The
expected value of the smallest p-value of true null hypotheses is at least 1/n and it
might be useful to truncate in practice the range over which the supremum is taken
in (5) to (1/n,1 − 1/n). Doing so, the following asymptotic results are still valid,
while the approximation by the Gumbel distribution is empirically a good fit even
for moderate values of n [6].

Similar weak convergence results for other bounding functions can be found in
[4] or [12].

2.2. Bounding functions. The estimate is determined by the choice of the
function δ(t), the so-called bounding function, and a suitable bounding sequence.

There are many conceivable bounding functions. Bounding functions of partic-
ular interest include:

– linear bounding function δ(t) = t ;
– constant bounding function δ(t) = 1;
– standard deviation–proportional bounding function δ(t) = √

t (1 − t).

The linear bounding function is closely related to the false discovery rate (FDR),
as introduced by Benjamini and Hochberg [1]. In the FDR setting, the empirical
distribution of p-values is compared to the linear function t/α. The last down-
crossing of the empirical distribution over the line t/α determines the number of
rejections that can be made when controlling FDR at level α. It is interesting to
compare this to the current setting. In particular, it follows by a result of Daniels [5]
that

P

(
sup

t∈(0,1)
Un(t)/t ≥ λ

)
= 1/λ.

The optimal bounding sequence at level α is thus given for the linear bounding
function by βn,α = 1/α − 1. Let λ̂ be the estimate under the linear bounding func-
tion. The estimate vanishes hence, that is, λ̂ = 0, if and only if no rejections can
be made under FDR control at the same level. Note that the bounding sequence is
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independent of the number of observations. This leads to weak power to detect the
full proportion λ of false null hypotheses when the proportion λ is rather high but
the distribution of p-values under the alternative deviates only weakly from the
uniform distribution, as shown in an asymptotic analysis below.

An estimate under a constant bounding function was already proposed by
Genovese and Wasserman [7]. Using the Dvoretzky–Kiefer–Wolfowitz (DKW) in-
equality, a bounding sequence is given by β2

n,α = 1
2n log 2

α . In contrast to the linear
bounding function, this bounding function sequence vanishes for n → ∞. How-
ever, the estimate is unable to detect any proportion of false null hypotheses that is
of smaller order than

√
n. The intuitive reason is that the bounding function δ(t) is

not vanishing for small values of t . Any evidence from false null hypotheses, how-
ever strong it may be, is hence lost if there are just a few false null hypotheses.

As already argued above, a bounding sequence for the standard deviation–
proportional bounding function is given by

βn,α = a−1
n

(
E−1(1 − α) + bn

)
,(13)

where E is the Gumbel distribution and an, bn are defined as in Lemma 1. Note
that the bounding sequence is vanishing at almost the same rate as for the constant
bounding function. In contrast to the constant bounding function, however, the
standard deviation–proportional bounding function vanishes for small t . It will be
seen that the standard deviation–proportional bounding function possesses optimal
properties among a large class of possible bounding functions.

2.3. Asymptotic properties of bounding sequences. Faced with an enormous
number of potential bounding functions, it is of interest to look at general prop-
erties of bounding functions, especially the asymptotic behavior of the resulting
estimates. The asymptotic properties turn out to be mainly determined by the be-
havior of δ(t) close to the origin.

DEFINITION 3. For every ν ∈ [0,1], let Qν be a family of real-valued func-
tions on [0,1]. In particular, δ(t) ∈ Qν iff:

(a) δ(t) is nonnegative and finite on [0,1] and strictly positive on (0,1);
(b) δ(1 − t) ≥ δ(t) for t ∈ (0, 1

2);
(c) the function δ(t) is regularly varying with power ν, that is,

lim
t→0

δ(bt)

δ(t)
= bν .

Most bounding functions of interest are members of Qν for some value of
ν ∈ [0,1]. The constant bounding function is a member of Q0, while the linear
bounding function is a member of Q1 and the standard deviation–proportional
bounding function is a member of Q1/2.
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It holds in general for any bounding function that bounding sequences can-
not be of smaller order than the inverse square root of n. In particular, note that
by Definition 1 of a bounding sequence, it has to hold for any t ∈ (0,1) that
P(Un(t)− t −βn,αδ(t) > 0) < α for all n ∈ N. Whereas nUn(t) ∼ B(n, t) is bino-
mially distributed with mean nt and variance proportional to n, it follows indeed
that

lim inf
n→∞ n1/2βn,α > 0.

Consider now bounding functions δ(t), which are members of Qν with some
ν ∈ (1

2 ,1]. It follows directly from Theorem 1.1(iii) in [4], page 255, that a more
restrictive assumption has to hold in this case, namely

lim inf
n→∞ n1−νβn,α > 0.(14)

For ν = 1 this amounts to lim infn→∞ βn,α > 0. The linear bounding function is
a member of Q1, explaining the lack of convergence to zero of the corresponding
optimal bounding sequence 1/α − 1.

For bounding functions δ(t) ∈ Qν with ν ∈ [0, 1
2 ], there exists some constant

c > 0 so that cδ(t)2 ≥ t (1 − t). Hence, using Lemma 1, there exist bounding se-
quences so that

lim sup
n→∞

(
n

log logn

)1/2
βn,α < ∞.(15)

The different asymptotic behavior of the bounding sequences influences the as-
ymptotic power to detect false null hypotheses, as will be seen subsequently.

3. Power. We examine the influence of the bounding function δ(t) on the
power to detect false null hypothesis. For simplicity of exposition, it is assumed
that the p-values of all false null hypotheses follow a common distribution G,
while p-values of true null hypotheses have a uniform distribution on [0,1]. For
some γ ∈ (0,1), let

λ ∼ n−γ .

A value of γ = 0 corresponds to a fixed proportion of false null hypotheses, while
γ = 1 corresponds to a fixed absolute number of false null hypotheses. Here all
cases between those two extremes are considered.

Bounding sequences with vanishing level. For the asymptotic analysis, it is
convenient to let α = αn decrease monotonically for n → ∞, so that αn → 0 for
n → ∞. Note that αn → 0 is equivalent to P(Vn,δ > βn,αn) → 0 for n → ∞. For
notational simplicity, this assumption is strengthened slightly to

Vn,δ/βn,αn

p→ 0, n → ∞.(16)
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In almost all cases of interest, (16) and αn → 0 are equivalent. To maintain reason-
able power, one would like to avoid letting the level αn vanish too fast as n → ∞.
For bounding functions δ(t) ∈ Qν with ν ∈ [0, 1

2 ] it is required that

lim sup
n→∞

(
n

logn

)1/2
βn,αn < ∞.(17)

It follows from (15) that it is always possible to find a sequence αn → 0 so that
both (16) and (17) are satisfied. If both (16) and (17) are satisfied, the sequence
αn is said to vanish slowly. For bounding functions δ(t) ∈ Qν with ν ∈ (1/2,1], it
will be seen below that the power is poor no matter how slowly the sequence αn

vanishes for n → 0.

3.1. Case I: many false null hypotheses, γ ∈ [0, 1
2). The fluctuations in the

empirical distribution function are negligible compared to the signal from false
null hypotheses if γ ∈ [0, 1

2). Hence one should be able to detect (asymptotically)
the full proportion of false null hypotheses in this first setting.

This is indeed achieved, as long as we look for bounding functions in Qν with
ν ∈ [0, 1

2 ], as shown below. If on the other hand ν ∈ (1
2 ,1], one is in general unable

to detect the full proportion of false null hypotheses. The proportion of detected
false null hypotheses even converges in probability to zero for large values of γ
if ν is in the range (1

2 ,1]. This includes in particular the linear FDR-style bound-
ing function t ∈ Q1, which is only able to detect a nonvanishing proportion of
false null hypotheses (asymptotically) as long as the proportion λ is bounded from
below, which is only satisfied for γ = 0.

THEOREM 2. Let G be continuous and let inft∈(0,1) G
′(t) = 0. Let λ̂ be the

estimate under bounding function βn,αδ(t), where δ(t) ∈ Qν with ν ∈ [0,1] and
βn,α is a bounding sequence. If ν ∈ [0, 1

2 ] and αn vanishes slowly, then, for all
γ ∈ [0, 1

2),

λ̂

λ

p→ 1, n → ∞.

However, for ν ∈ (1
2 ,1] and γ ∈ (1 − ν, 1

2),

λ̂

λ

p→ 0, n → ∞.

REMARK 2. The case inft∈(0,1) G
′(t) = 0 corresponds to the “pure” case

in [7]. If inft∈(0,1) G
′(t) > 0, the results above (and below) hold if λ is replaced

by

λ=
(

1 − inf
t∈(0,1)

G′(t)
)
λ.
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Without making parametric assumptions about the distribution G under the alter-
native, identifying λ is indeed the best one can hope for.

The message from Theorem 2 is that one should look for bounding functions in
Qν with ν ∈ [0, 1

2 ]. This guarantees proper behavior of the estimate if the propor-
tion λ of false null hypotheses is vanishing more slowly than the square root of the
number of observations.

3.2. Case II: few false null hypotheses, γ ∈ [1
2 ,1). As seen above, bounding

functions in Qν with ν ≤ 1
2 detect asymptotically the full proportion λ of false

null hypotheses if λ is vanishing not as fast as the square root of the number of
observations.

For γ > 1/2, no method can detect asymptotically the full proportion of false
null hypotheses if the distribution under the alternative is fixed. For a fixed non-
degenerate alternative, the majority of p-values from false null hypotheses fall
with high probability into a fixed interval that is bounded away from zero. The
fluctuations of the empirical distribution function in such an interval are asymptot-
ically infinitely larger than any signal from false null hypotheses if γ > 1/2, which
makes detection of the full proportion of false null hypotheses impossible.

It is hence interesting to consider cases where the signal from false null hypothe-
ses is increasing in strength. Therefore, let G = G(n), the distribution of p-values
under the alternative, be a function of the number n of tests to conduct. The super-
script is dropped in the following for notational simplicity.

Shift-location testing. It is perhaps helpful to think about G as being induced
by some shift-location testing problem. For each test it is assumed that there is a
test statistic Zi , which follows some distribution T0 under the null hypothesis H0,i

and some shifted distribution Tµn under the alternative H1,i :

H0,i :Zi ∼ T0,
(18)

H1,i :Zi ∼ Tµn.

In the Gaussian case this amounts, for example, to T0 = N (0,1) and Tµ =
N (µn,1). To have an interesting problem, one needs for γ ∈ (1

2 ,1) in general
that the shift µn between the null and alternative hypotheses be increasing for an
increasing number of tests; that is, µn → ∞ for n → ∞.

On the other hand, one would like to keep the problem subtle. For the Gaussian
case it was shown by Donoho and Jin [6] that an interesting scaling is given by
µn = √

2r logn with r ∈ (0,1). In this regime, the smallest p-value stems with
high probability from a true null hypothesis. The false null hypotheses have hence
little influence on the extremes of the distribution.
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Instead of assuming Gaussianity of the test statistics, Donoho and Jin [6] consid-
ered a variety of different distributions. Under a generalized Gaussian (Subbotin)
distribution, the density is for some positive value of κ proportional to

T ′
µ(x) ∝ exp

(
− |x − µ|κ

κ

)
.

The case κ = 2 corresponds clearly to a Gaussian distribution; κ = 1 corresponds
to the double exponential case. The shift parameter is chosen then as

µn = (κr logn)1/κ(19)

for some r ∈ (0,1). Note that the expectation of the smallest p-value from true null
hypotheses vanishes like n−1, whereas under the scaling (19), the median p-value
of false null hypotheses vanishes like n−r for n → ∞ with some r ∈ (0,1). In
fact, consider for any member of the generalized Gaussian Subbotin distribution
the q-quantile G−1(q) of the distribution of p-values under the alternative. For
some constant cq , the q-quantile is proportional to

G−1(q) ∝
∫

µn+cq

exp
(
−xκ

κ

)
dx.

Applying l’Hôpital’s rule twice, it follows for any c and κ > 0 that

lim
a→∞

log
∫ ∞
a+c exp(−xκ/κ) dx

−aκ/κ
= 1.

Thus, under the scaling (19), for any every q ∈ (0,1) and positive κ , the scaling of
the q-quantile is given by

logG−1(q) ∼ −r logn.(20)

With probability converging to 1 for n → ∞, a p-value under a false null hypoth-
esis is hence larger than the smallest p-value from all true null hypotheses as long
as r ∈ (0,1). For r > 1, the problem gets trivial as the probability that an arbi-
trarily high proportion of p-values under false null hypotheses is smaller than the
smallest p-value from all true null hypotheses converges to 1 for n → ∞.

The point of introducing the shift-location model under generalized Gaussian
Subbotin distributions was just to identify (20) with r ∈ (0,1) as the interesting
scaling behavior of quantiles of G, the p-value distribution for alternative hypothe-
ses. The setting (20) is potentially of interest beyond any shift-location model. We
adopt the scaling (20) for the following discussion without making any explicit
distributional assumptions about underlying test statistics.

THEOREM 3. Let λ ∼ n−γ with γ ∈ [1
2 ,1) and let the distribution G of

p-values under the alternative satisfy (20) for some r ∈ (0,1). Let λ̂ be the es-
timate of λ under a bounding function βn,αδ(t), where δ(t) ∈ Qν with ν ∈ [0, 1

2 ]
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and βn,αn is a bounding sequence for δ(t). Let αn vanish slowly. If r > 1
ν (γ − 1

2),

λ̂

λ

p→ 1.(21)

If, on the other hand, r < 1
ν (γ − 1

2), then

λ̂

λ

p→ 0.(22)

REMARK 3. The analysis was only carried out for functions with ν ∈ [0, 1
2 ]

due to the deficits of the functions with ν ∈ (1
2 ,1] discussed in the previous section.

Nevertheless, it would be possible to carry out the same analysis here. For ν = 1,
one obtains, for example, a critical boundary r > γ .

The message from the last theorem is that among all bounding functions in Qν

with ν ∈ [0, 1
2 ], it is best to choose a member of Q1/2. Bounding functions in

Q1/2 increase the chance to detect the full proportion λ of false null hypotheses,
as illustrated for a few special cases in Figure 1. The area in the (r,γ ) plane where
λ̂/λ converges in probability to 1 for a bounding function in Q1/2 includes in
particular all areas of convergence for bounding functions in Qν with ν ∈ [0, 1

2 ].

3.3. Connection to the familywise error rate. A different estimate of λ is ob-
tained by controlling the familywise error rate (FWER). In particular, let the esti-
mate be the total number of p-values less than the FWER threshold α/n, divided
by the total number of hypotheses,

λ̂= Fn

(
α

n

)
.

This is an estimate of λ with the desired property P(λ̂ > λ) < α. Controlling the
familywise error rate has often been criticized for lack of power. Indeed, in the

FIG. 1. For ν = 0 (left), ν = 1/2 (second from left) and ν = 1 (second from right), an illustration
of the asymptotic properties of the estimate λ̂. The shaded area marks those areas in the (r,γ ) plane
where λ̂/λ →p 1, whereas for the white areas λ̂/λ →p 0. The choice ν = 1/2 is seen to be optimal.
The corresponding plot for control of the familywise error rate is shown on the right for comparison.
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asymptotic analysis above it is straightforward to show that the area in the (r,γ )
plane where λ̂/λ →p 1 is restricted to the half-plane r > 1 (neglecting again what
happens directly on the border r = 1). In comparison to other estimates proposed
here, the familywise error rate is hence particularly bad for estimating λ if there
are many false null hypotheses, each with a very weak signal. In addition, the con-
struct requires that p-values can be determined accurately down to precision α/n,
which might be prohibitively small. In contrast, the performance of estimates of
the form (5) does not deteriorate significantly if p-values are truncated at larger
values.

The drawbacks of the familywise error rate are a consequence of the stricter
inference one is trying to make when controlling the familywise error rate. In par-
ticular, one is trying to infer exactly which hypotheses are false nulls as opposed
to only how many false nulls there are in total. The loss in power is hence the price
one pays for this more ambitious goal.

3.4. Connection to higher criticism. A connection of the proposed estimate
to the higher criticism method of Donoho and Jin [6] for detection of sparse het-
erogeneous mixtures emerges. In their setup p-values Pi , i = 1, . . . , n, are i.i.d.
according to a mixture distribution

Pi ∼ (1 − λ)H + λG,

where H is the uniform distribution and G the distribution of p-values under the
alternative hypothesis. In [6] the focus is on testing the global null hypothesis that
there are no false null hypotheses at all,

H0 :λ = 0.

In contrast, in this current paper we are interested in quantifying the proportion λ
of false null hypotheses. The proportion λ of false null hypotheses, as defined for
the current paper in (1), can be viewed as a realization of a random variable with
a binomial distribution, nλ ∼ B(n,λ). For the asymptotic considerations of this
paper, however, the distinction between λ and λ is of little importance because the
ratio λ/λ converges almost surely to 1 for n → ∞.

The two goals of higher criticism and the current paper are connected. If there
is evidence for a positive proportion of false null hypotheses with the proposed
method, then the global null H0 can clearly be rejected. In other words, if one ob-
tains a positive estimate λ̂> 0 with P(λ̂ > λ) < α, then the global null hypothesis
H0 :λ = 0 can be rejected at level α. Note that the level is correct even for finite
samples and not just asymptotically.

The connection between the two methods works as well in the reverse direc-
tion if an optimal bounding function is chosen. It emerged in particular from the
analysis above that bounding functions that are members of Q1/2 have optimal as-
ymptotic properties. For the particular choice of a standard deviation–proportional



PROPORTION OF FALSE NULL HYPOTHESES 385

bounding function in Q1/2, let λ̂ be an estimate of λ and let βn,α be a bounding
sequence that satisfies

βn,α = n−1/2(2 log logn)1/2(
1 + o(1)

)
.

Donoho and Jin [6] are not specific about choice of a critical value for higher
criticism. However, choosing

√
nβn,α as a critical value meets their requirements.

The higher criticism procedure rejects in this case if and only if the estimate λ̂ of
the proportion of false null hypotheses is positive,

{reject H0 :λ = 0 with higher criticism} = {λ̂ > 0}.
If both λ ∼ n−γ and λ ∼ n−γ for some γ ∈ [0,1], the question arises if the area in
the (γ , r) plane where

P(higher criticism rejects H0) → 1(23)

is identical to the area where

λ̂

λ

p→ 1.(24)

Intuitively, it is clear that it is somewhat easier to test for the global null hypoth-
esis H0 :λ = 0, as done in higher criticism, than to estimate the precise proportion
λ of false null hypotheses, as done in this paper. One would therefore expect that
the area of convergence in the (γ , r) plane of (23) includes the area of convergence
of (24).

It is hence maybe surprising that for some cases the areas of convergence in
the (γ , r) plane of (23) and (24) agree. To illustrate the point, consider again the
shift-location model (18) under a generalized Gaussian Subbotin distribution with
parameter κ ∈ (0,2) and a shift (19) of test statistics under the alternative.

The area in the (γ , r) plane where λ̂/λ →p 1 is in this setting independent of the
parameter κ . The detection boundary for higher criticism, however, does depend
on κ . For the Gaussian case (κ = 2) and in general for κ > 1, the detection bound-
ary for higher criticism is, for γ ∈ (1/2,1), below the area where λ̂/λ →p 1. The
reason for this is intuitively clear. The higher criticism method looks in these cases
for evidence against H0 in the extreme tails of the distribution G; see [6]. At these
points, only a vanishing proportion of all p-values from false null hypotheses can
be found. If one is trying to estimate the full proportion of false null hypotheses,
the evidence for a certain amount of false null hypotheses has to be found at less
extreme points, where one can expect a significant proportion of p-values from
false null hypotheses. This limits the region of convergence in the sense of (24)
compared to the area where higher criticism can successfully reject the global null
hypothesis H0 :λ = 0.

However, for κ ≤ 1 (including thus the case of a double-exponential distribu-
tion) the two areas where (23) and (24) hold, respectively, are identical, as shown
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FIG. 2. Comparison between the estimate of λ̂ and detection regions under higher criticism if
test statistics follow the location-shift model (18) and are distributed according to the generalized
Gaussian Subbotin distribution with shift parameter (19). The shaded area in the left panel shows
again the area of convergence in probability of λ̂/λ to 1 for a bounding function in the class Q1/2.
The shaded area in the right panel corresponds to the region where higher criticism can reject as-
ymptotically the null hypothesis H0 :λ = 0 for κ ≤ 1, including the double-exponential case. The line
below marks the detection boundary for the Gaussian case (κ = 2).

in Figure 2. In the white area, both higher criticism and the current method fail
to detect (asymptotically) the presence of false null hypotheses, and not even the
likelihood ratio test is able to reject in these cases (asymptotically) the global null
hypothesis H0 :λ = 0 that there are only true null hypotheses [6]. It is hence of
interest to see that for κ ≤ 1, λ̂/λ →p 1 holds whenever the likelihood ratio test
succeeds (asymptotically) in rejecting the global null hypothesis.

4. Numerical examples. It emerged from the analysis above that the standard
deviation–proportional bounding function is optimal in an asymptotic sense. In the
following discussion we briefly compare various bounding functions for a moder-
ate number of tests, n = 1000. The setup is identical to the shift-location testing
of Section 3.2, equation (18). For true null hypotheses, test statistics follow the
normal distribution N (0,1). For false null hypotheses, test statistics are shifted by
an amount µ > 0 and are N (µ,1)-distributed.

The proportion λ̂/λ of correctly identified false null hypotheses is computed for
various values of the shift parameter µ and three bounding functions. The results
for 100 simulations are shown in Figure 3. The left column shows results for very
few false null hypotheses (λ = 0.01), corresponding to 10 false null hypotheses,
while results are shown in the right column for a moderately large number of false
null hypotheses (λ= 0.2).

For very few false null hypotheses (λ = 0.01), both the standard deviation–
proportional and linear bounding functions identify a substantial proportion of
false null hypotheses if the shift µ is larger than about 3. The expected value of
the largest test statistic from true null hypotheses is, for comparison in the current
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FIG. 3. The proportion λ̂/λ of correctly detected false null hypotheses as a function of the separa-
tion µ. Results are shown for the standard deviation–proportional bounding function (top row), the
constant bounding function (middle row), and the linear bounding function (bottom row).

setup, at around 3.7. The constant bounding function (ν = 0) fails to identify any
of the 10 false null hypotheses even for very large shifts µ. This is in line with the
theoretical results from Section 3.2. For a moderately large number of false null
hypotheses (λ = 0.2), the performance of the linear bounding function is worse
than for the other two bounding functions, as expected from the asymptotic results
in Section 3.1. The standard deviation–proportional bounding function (ν = 1/2)
in both cases consistently identifies the most false null hypotheses, and the opti-
mality of this bounding function is thus numerically evident for moderate sample
sizes as well.

For the standard deviation–proportional bounding function (ν = 1/2), asymp-
totic control was proposed in (10). The result relies on convergence of the
supremum of a weighted empirical distribution to the Gumbel distribution. This
convergence is in general slow, as already mentioned in Remark 3. The conver-
gence is comparably fast, however, if the region over which the supremum is taken
is restricted to, say, (1/n,1 − 1/n), as observed by Donoho and Jin [6]. We illus-
trate this in the following text. Restricting the interval over which the supremum
is taken in (5) to some interval (a, b) with 0 < a < b < 1, bounding sequences can
be defined analogous to Definition 1 by requirement (b) in Definition 1 and

βn,α = min
{
β :P

(
sup

t∈(a,b)

Un(t) − t

δ(t)
> β

)
≤ α

}
.(25)

Bounding sequences for the interval (0,1) satisfy (25) for every interval (a, b), but
might be unduly conservative. Less conservative bounding sequences can be found
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FIG. 4. Random samples of the weighted empirical distribution function (Un(t) − t)/δ(t) with
δ(t) = √

t (1 − t) on the left. Various bounding sequences βn,α as a function of n in log-log scale on
the right: the asymptotically valid bounding sequence (solid line), and the bounding sequences for
the intervals (0,1) (dotted line), (1/n,1 − 1/n) (upper dashed line) and (1/n,0.01) (lower dashed
line), as obtained by simulation. Note that the latter two are almost indistinguishable.

conveniently by approximating the probability of supt∈(a,b)(Un(t) − t)/δ(t) > β

with the empirical proportion of occurrence of this event among a large number of
simulations. This is illustrated in the left panel in Figure 4. Shown are five random
samples of the the weighted empirical distribution (Un(t) − t)/δ(t) for n = 200
and δ(t) = √

t (1 − t). Let the value β correspond to the lower bound of the gray
area in Figure 4. For an interval (a, b) = (0,0.4), the event supt∈(a,b)(Un(t) −
t)/δ(t) > β corresponds then to the event that a realization of a weighted empirical
distribution crosses the gray area. The bounding sequences obtained by using 1000
simulations of the weighted empirical distribution are shown in the right panel in
Figure 4 for various intervals (a, b).

There are two main conclusions. First, one might suspect that p-values from
false null hypotheses are mostly found in a neighborhood around zero. Restricting
the region in (5) to such a neighborhood promises thus to capture all p-values from
false null hypotheses while allowing for smaller bounding sequences. However,
the numerical results suggest otherwise. The bounding sequence for the region
(1/n,0.01) is, for example, almost indistinguishable from the bounding sequence
for the region (1/n,1 − 1/n), as can be seen in Figure 4.

Second, the agreement of the asymptotically valid bounding sequence (13) with
the bounding sequence that is obtained by simulation for the interval (1/n,1 −
1/n) is very good even for moderate sample sizes, while the agreement is not so
good for the interval (0,1). When using the asymptotically valid bounding se-
quence it is hence advisable to restrict the region over which the supremum is
taken in (5) to (1/n,1 − 1/n). This ensures that the true level is close to the cho-
sen level α for moderate sample sizes.
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For practical applications, we hence recommend that one calculate the supre-
mum in (5) over a region (1/n,1 − 1/n) and use the standard deviation–
proportional bounding function with the asymptotically valid bounding se-
quence (13). The asymptotic results of the previous sections hold for this modified
procedure.

5. Proofs.

PROOF OF THEOREM 2. First it is shown that, as long as γ ∈ (0, 1
2) and ν ≤ 1

2 ,
for any given ε > 0,

P
(
λ̂ < (1 − ε)λ

) → 0, n → ∞.(26)

Let the empirical distribution of p-values be defined as in (4) by Fn(t) =
n−1 ∑n

i=1 1{Pi ≤ t}. We suppose that the proportion of false null hypotheses is
fixed at λ, so that Fn(t) is a mixture Fn(t) = λGn1(t) + (1 − λ)Un0(t), where
Gn1(t) is the empirical distribution of n1 = λn i.i.d. p-values with distribution
G and Un0(t) is the empirical distribution of n0 = (1 − λ)n i.i.d. p-values with
uniform distribution U . For any t < 1,

λ̂ = sup
t∈(0,1)

Fn(t) − t − βn,αnδ(t)

1 − t
(27)

≥ F(t) − t

1 − t
+ Fn(t) − F(t) − βn,αnδ(t)

1 − t
(28)

= λ
G(t) − t

1 − t
+ Fn(t) − F(t) − βn,αnδ(t)

1 − t
.(29)

Whereas inft∈(0,1) G
′(t) = 0 and, hence, supt∈(0,1)(G(t) − t)/(1 − t) = 1, there

exists by continuity of G(t) some t1 so that (G(t1) − t1)/(1 − t1) > (1 − ε/2).
Setting ε̃ = 1

2(1 − t1)ε, it suffices to show that for every ε > 0,

P
(
βn,αnδ(t1) + F(t1) − Fn(t1) > ε̃λ

) → 0, n → ∞.

Whereas Fn(t1) − F(t1) = OP (n−1/2) and λ ∼ n−γ with γ < 1
2 , this follows from

the finiteness of δ(t) and, because αn vanishes slowly, from (17). This completes
the first part of the proof of Theorem 2.

For the second part, it suffices to show that for ν ∈ (1
2 ,1] and γ ∈ (1 − ν, 1

2),
and any ε > 0,

P(λ̂ > ελ) → 0, n → ∞.(30)

In this regime, the penalty βn,αnδ(t) is asymptotically larger than the signal from
false null hypotheses. Using the definition of λ̂, the notation n0 = (1 − λ)n and
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n1 = λn, and Fn(t) = λGn1(t) + (1 − λ)Un0(t), it follows that

P(λ̂ > ελ) = P

(
sup

t∈(0,1)

Fn(t) − t − βn,αnδ(t)

1 − t
> ελ

)

= P

(
sup

t∈(0,1)
λ
Gn1(t) − t

1 − t
− ελ+ (1 − λ)

Un0(t) − t

1 − t
− βn,αn

δ(t)

1 − t
> 0

)

≤ P

(
sup

t∈(0,1)
λ
Gn1(t) − t

1 − t
− ελ− βn,αn

2
δ(t)

1 − t
> 0

)
(31)

+ P

(
sup

t∈(0,1)
(1 − λ)

Un0(t) − t

1 − t
− βn,αn

2
δ(t)

1 − t
> 0

)
.(32)

Observe in (32) that (1 − λ)−1βn,αn = nβn,αn/n0 ≥ βn0,αn ≥ βn0,αn0
. Thus (32)

can be bounded by P(Vn0,δ > βn0,αn0
/2). By (16) and n0 → ∞ it follows that (32)

vanishes for n → ∞. It remains to show that (31) vanishes as well. Let t2 = sup{t ∈
(0,1) :G(t) ≤ ε/2}. Using Bonferroni’s inequality, (31) is bounded by

P

(
sup

t∈(0,t2]
λ
Gn1(t) − t

1 − t
− ελ > 0

)
(33)

+ P

(
sup

t∈(t2,1)
λ
Gn1(t) − t

1 − t
− βn,αn

2
δ(t)

1 − t
> 0

)
.(34)

Whereas (Gn1(t) − t)/(1 − t) ≤ Gn1(t) for all t ∈ [0,1], the first term (33) is
bounded by P(Gn1(t2) > ε), which vanishes for n → ∞ because by definition
of t2, G(t2) ≤ ε/2 and n1 = λn → ∞. Using Gn1(t) ≤ 1, the second term (34)
equals zero if βn,αn inft∈(t2,1) δ(t)/(1 − t) > 2λ. By conditions (a) and (b) in Def-
inition 3, it holds that inft∈(t2,1) δ(t)/(1 − t) > 0. By (14), it follows furthermore
that βn,αn/λ → ∞ for n → ∞, which completes the proof. !

PROOF OF THEOREM 3. First it is shown that for r > 1
ν (γ − 1

2),

P
(
λ̂< (1 − ε)λ

) → 0, n → ∞.(35)

Here the penalty is again asymptotically larger than the signal from false null hy-
potheses for a fixed point t ∈ (0,1). However, because the signal from false null
hypotheses is increasing in strength for larger n, the evidence for a certain amount
of false null hypotheses can be found at decreasing values of t . Using the de-
finition of λ̂, for any t ∈ (0,1), λ̂ ≥ Fn(t) − t − βn,αnδ(t) and, hence, for any
t ∈ (0,1),

λ̂/λ− 1 ≥ (
1 − Gn1(t)

) − t − 1 − λ

λ

(
t − Un0(t)

) − 1
λ
βn,αnδ(t),
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where again n1 = λn and n0 = (1 − λ)n. Choosing tn,τ = n−r+τ for some 0 <
τ < r − 1

ν (γ − 1
2), observe that by (20) it follows that 1 − G(n−r+τ ) = o(1).

Hence

λ̂/λ− 1 ≥ (
1 − G(tn,τ )

) − ∣∣G(tn,τ ) − Gn1(tn,τ )
∣∣

− tn,τ − λ−1∣∣tn,τ − Un0(tn,τ )
∣∣ − λ−1βn,αnδ(tn,τ )

= o(1) − op(1) − o(1) − Op
(
nγ−(1/2+(r−τ )/2))

− O
(
nγ−(1/2+(r−τ )ν) logn

)
.

The proof of (35) follows because γ < 1
2 + ν(r − τ ) ≤ 1

2 + r−τ
2 .

Second, it has to be shown that P(λ̂ > ελ) → 0 if r < 1
ν (γ − 1

2). Again, the
evidence for a certain amount of false null hypotheses would have to be found
at decreasing values of t . However, the decrease has to be so fast in this regime
that the signal from false null hypotheses is not captured. Using again the notation
n1 = λn and n0 = (1 − λ)n, we find that λ̂ = supt∈(0,1) Dn,λ(t), where

Dn,λ(t) := λ(Gn1(t) − t) + (1 − λ)(Un0(t) − t) − βn,αnδ(t)

1 − t
.(36)

Choose a sequence tn,ρ = n−r−ρ for some 0 < ρ < 1
ν (γ − 1

2) − r . The regions
(0, tn,ρ] and (tn,ρ,1) are considered separately for the following. In particular, it
is shown that both P(supt∈(0,tn,ρ ] Dn,λ(t) > ελ) and P(supt∈(tn,ρ ,1) Dn,λ(t) > ελ)

vanish for n → ∞. For t > tn,ρ , it holds that

P

(
sup

t∈(tn,ρ ,1)
Dn,λ(t) > ελ

)

≤ P

(
sup

t∈(tn,ρ ,1)
λ+ (1 − λ)

Un0(t) − t

1 − t
− βn,αn

δ(t)

1 − t
> 0

)

≤ P

(
sup

t∈(tn,ρ ,1)
(1 − λ)

Un0(t) − t

1 − t
− βn,αn

2
δ(t)

1 − t
> 0

)

+ 1
{

sup
t∈(tn,ρ ,1)

λ− βn,αn

2
δ(t)

1 − t
> 0

}

= P

(
sup

t∈(tn,ρ ,1)

(
Un0(t) − t

) − n

n0

βn,αn

2
δ(t) > 0

)
(37)

+ 1
{

inf
t∈(tn,ρ ,1)

βn,αn

2
δ(t)

1 − t
< λ

}
.(38)

By (16) and because nβn,αn is monotonically increasing, (37) vanishes for n → ∞.
For (38), because δ ∈ Qν , there exists a constant c so that inft∈(tn,ρ ,1) δ(tn,ρ) ≥
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cn−ν(r+ρ). It follows by r + ρ < 1
ν (γ − 1

2) that inft∈(tn,ρ ,1) βn,αnδ(tn,ρ)/λ → ∞
for n → ∞, which completes the first part of the proof.

It remains to show that P(supt∈(0,tn,ρ ] Dn,λ(t) > ελ) → 0 for n → ∞. It holds
that

P

(
sup

t∈(0,tn,ρ ]
Dn,λ(t) > ελ

)

≤ P

(
sup

t∈(0,tn,ρ ]
(1 − λ)

Un0(t) − t

1 − t
− βn,αn

δ(t)

1 − t
>

ε

3
λ

)
(39)

+ P

(
sup

t∈(0,tn,ρ ]
λ
Gn0(t) − G(t)

1 − t
>

ε

3
λ

)
(40)

+ 1
{

sup
t∈(0,tn,ρ ]

λ
G(t) − t

1 − t
>

ε

3
λ

}
.(41)

As already argued above, the probability on the right-hand side of (39) van-
ishes for n → ∞. The probability (40) clearly likewise vanishes and it remains
to show that (41) vanishes as well for n → ∞. Whereas tn,ρ → 0, it holds that
(1 − t)−1 ≤ 2 for t ∈ (0, tn,ρ] and large enough values of n. The term (41) van-
ishes hence if G(tn,ρ) < ε

6 . This is equivalent to logG−1( ε6) < −(τ +ρ) logn, and
the claim follows from property (20). !
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