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and where many exciting results have been obtained. It also falls in the

very hot area at the interface of statistics and optimization: ℓ1-constrained

minimization in linear models for computationally efficient model selection,

or sparse model estimation. The sparsity consideration indicates a trend in

high-dimensional data modeling advancing from prediction, the hallmark of

machine learning, to sparsity - a proxy for interpretability. This trend has

been greatly fueled by the participation of statisticians in machine learn-

ing research. In particular, Lasso (Tibshirani, 1996) is the focus of many

sparsity studies both in terms of theoretical analysis (Knight and Fu, 2000;

Greenshtein and Ritov, 2004; van de Geer, 2006; Bunea et al., 2006; Mein-
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Given n units of data Zi = (Xi, Yi) with Yi ∈ R and XT
i ∈ R

p for

i = 1, . . . , n. Let Y = (Y1, ..., Yn)T ∈ R
n be the continuous vector response

variable and X = (X1, ...,Xn)T the n× p design matrix and let the columns

of X be normalized to have ℓ2-norm 1. It is often useful to assume a linear

regression model:

Y = Xβ + ǫ,(1)

where ǫ is an iid N(0, σ2) vector of size n.

Lasso minimizes the ℓ1-norm of the parameters subject to a constraint

on squared error loss. That is, βlasso(t) solves the following ℓ1-constrained

minimization problem:

min
β

‖β‖1 subject to
1

2
‖Y − Xβ‖2

2 ≤ t.(2)

We can clearly use constraint and objective function interchangeably. For

each value of t > 0, one can also find a value of the Lagrange multiplier λ

so that Lasso is the solution of the penalized version

minβ

1

2
‖Y − Xβ‖2

2 + λ‖β‖1(3)

Finally, it is well known that an alternative form of Lasso (Osborne et al.,

2000) asserts that βlasso
λ also solves:

minβ

1

2
βT XT Xβ subject to ‖XT (Y − Xβ)‖∞ ≤ λ,(4)

where λ is identical to the penalty parameter in the penalized version (3).

In what follows, we consider Dantzig estimates βdantzig
λ solving the following

constrained minimization problem:

minβ ‖β‖1 subject to ‖XT (Y − Xβ)‖∞ ≤ λ.(5)
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the Dantzig selector as proposed by the authors uses λ = λp(σ) = σ
√

2 log p.

To distinguish the two, we reserve the term Danzig selector for this particular

choice of λ throughout this discussion. Comparing Dantzig with Lasso in its

forms (4) and (5) reveals very clearly their close kinship. Hence we would

like to view the Dantzig paper in the context of the vast literature on Lasso.

We will start with some comments on the theory side before concentrating

on comparing Dantzig and Lasso from the points of view of algorithmic and

statistical performance.

1. Lasso and Dantzig: theoretical results. Assuming σ is known,

the Dantzig selector uses a fixed tuning parameter λp(σ). Under a condition

called Uniform Uncertainty Principle (which requires almost orthonormal

predictors when choosing subsets of variables) an effective bound is obtained

on the MSE ‖β̂dantzig

λp(σ) − β‖2
2 for the Dantzig selector. After a simple step of

bounding the projected errors on the predictors, the proof is deterministic.

This bounding step gives rise to the particular chosen threshold λp(σ). In

terms of tools used, this paper is closely related to earlier papers by the

authors, Donoho et al. (2006) and Donoho (2006) on Lasso.

There is a parallel development of understanding Lasso under the lin-

ear regression model in (1) with stochastic tools. The results are in terms

of the ℓ2-MSE on β as and also in terms of the ℓ2-MSE on the regression

function Xβ (for instance Greenshtein and Ritov, 2004; Bunea et al., 2006;

van de Geer, 2006; Zhang and Huang, 2006; Meinshausen and Yu, 2006).

Related results for L2Boosting are obtained by Bühlmann (2006). Since

Lasso is important for its model selection property, it is natural to study

directly Lasso’s model selection consistency as in the works of Meinshausen
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and Bühlmann (2006); Zhao and Yu (2006); Zou (2005); Wainwright (2006,

2007) and Tropp (2006). What has emerged from this cluster of works is

the necessity of an irrepresentable condition for Lasso to select the correct

variables under sparsity conditions on the model. This condition regulates

how correlated the predictors can be before wrong predictors are selected.

However, this condition can be relaxed and Lasso still behaves sensibly.

Specifically, Meinshausen and Yu (2006) and Zhang and Huang (2006) as-

sume less restricted conditions on the predictors than the UUP condition

to derive a bound on the same MSE (β) for an arbitrary λ. The bound is

probably weaker than the Dantzig bound, but the assumptions are weaker

as well so it covers commonly occurring highly correlated predictors. It is a

consequence of this bound that in the case of p ≫ n, if the model is sparse,

Lasso can reduce significantly the number of predictors while keeping the

correct ones. It would be interesting to see the Dantzig bound generalized

to the case of more correlated predictors and for a range of λ’s since σ is

mostly unknown in practice and has to be estimated.

2. Lasso and Dantzig: algorithm and performance. The similar-

ities of Lasso and Dantzig revealed in (4) and (5) beg us to ask: How does

Dantzig differ from Lasso? Which one should one use in practice and why?

Let us start with a simple case where geometric visualizations of of Dantzig

and Lasso optimization problems can be easily displayed.

Lasso vs Dantzig: p = 3 and in the population limit. We choose three

predictors from the multivariate normal distribution with a zero mean vector

and a covariance matrix V with a unit diagonal and entries V12 = 0 and

V13 = V23 = r, where |r| < 1/
√

2 to guarantee positive definiteness of V.
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For simplicity, we consider the case of n = ∞, so we have zero noise and

the population covariance V . We do this by setting the observations to be

Y = Xβ∗, with β∗ = (1, 1, 0) and X given by the Cholesky decomposition of

V so X ′X = V . For the purpose of visualization, we rewrite the minimization

problems in (2) and (5) in the following alternative forms:

minβ ‖Y − Xβ‖2
2; subject to ‖β‖1 ≤ t, for Lasso;(6)

minβ ‖X ′(Y − Xβ)‖∞; subject to ‖β‖1 ≤ t, for Dantzig.(7)

In Figure 1, we display six plots of these alternative minimization problems.

On the two leftmost columns, the ℓ1-polytopes sitting at the origin give the

same ℓ1-constraint ‖β‖1 ≤ 1. The touching ball or ellipsoids in the first row

correspond to the Lasso ℓ2-objective function for the Lasso, while the cube

and polytopes in the second row correspond to the ℓ∞-objective function for

Dantzig. In the first column of the plots, r = 0 and both Lasso and Dantzig

correctly select only the first two variables. In the second column, we set

the correlation at r = 0.5. The Lasso still correctly selects only the first

two variables. Meanwhile, the Dantzig admits multiple solutions, namely all

points belonging to the line connecting (0, 0, 1) and (1,1,0)
2 . While it is true

that (1,1,0)
2 is one of the Dantzig solutions correctly selecting the first two

variables and discarding the third, all other solutions incorrectly include the

third variable. In the other extreme, (0, 0, 1) is also a solution where the

first and second variables are wiped out from the model and only the third

is added.

In this example, r = 0.5 is a critical point where the irrepresentable

condition (Zhao and Yu, 2006) breaks down. The transition from below 0.5

to above can be seen in the third column of Fig. 1, which depicts the contour
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Fig 1. The panels in the first row and second row refer respectively to Lasso and Dantzig.
The geometry in the β space for the optimization problems (6) and (7) is shown for the
uncorrelated design (leftmost panel) and for correlated design with r = 0.5 (middle panel).
The Lasso solution is the point where the ellipsoid of ℓ2-loss touches the ℓ1-polytope and
is unique in both cases. For Dantzig, the solutions are given by the points touching the
ℓ1-polytope and the box-shaped ℓ∞-constraint on the correlations of the predictor variables
with the residuals. For r = 0.5, the solution is not uniquely determined for Dantzig as
the side of the box aligns with the surface of the ℓ1-polytope. The rightmost column shows
the third component β̂3 of the respective solution as a function of the correlation r and
the regularization parameter λ as defined in (4) and (5). The Dantzig solution is not
continuous at r = 0.5.
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plots of the estimated β3 by Lasso and Dantzig: r varies from 0.35 to 0.70

along the vertical direction and each horizontal line show the whole path

as a function of λ in the optimization problems (4) and (5) for a fixed r.

When r > 0.5, both Lasso and Dantzig systematically select the wrong

third predictor (or the estimated β3’s are non zero). In terms of size of

the incorrectly added coefficient, however, the transition is much sharper

for Dantzig as r crosses 0.5. In fact, the solution of the Dantzig is not a

Lipschitz continuous function of the observations for r = 0.5. This could be

expected, as Dantzig is the solution of a linear program (LP) problem and

the estimator can thus jump from one vertex in the ℓ∞ box to another if the

data changes slightly. When λ varies, the regularization path for the Dantzig

is piecewise linear. However, the flat faces of both the loss and the penalty

functions can cause jumps in the path, similarly to what happens in the ℓ1-

penalized quantile regression (Rosset and Zhu, 2004). This makes the design

of an algorithm in the spirit of the homotopy/LARS-LASSO algorithm for

the Lasso (Osborne et al., 2000; Efron et al., 2004) more challenging and

gives rise to jittery paths relative to Lasso and L2Boosting, as seen in the

simulated example below.

The first column of Fig. 1 suggests that Lasso and Dantzig could coincide.

At the very least, their regularization paths share the same terminal points

given by the minimal ℓ1-norm vector of coefficients causing the correlation of

all predictors with the residuals to be zero. In fact, more similarities exist:

we now provide a sufficient condition for the two paths to entirely agree

when n ≥ p. The condition is diagonal dominance of (XT X)−1, that is, for
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M = (XT X)−1,

(8) Mjj >
∑

i6=j

|Mij | for all j = 1, ..., p.

When p = 2, condition (8) is always satisfied so Lasso is exactly the same as

Dantzig (and L2Boosting). Moreover, the irrepresentable condition is always

satisfied as well. The diagonal dominance condition (8) is related to the

positive cone condition used in Efron et al. (2004) to show that L2Boosting

and Lasso share the same path. The positive cone condition requires, for

all subsets A ⊆ {1, . . . , p} of variables that Mjj > −∑
i6=j Mij, where M =

(XT
AXA)−1 and is always trivially satisfied for p = 2.

Theorem 1. Under the diagonal dominance condition (8), the Lasso

solution (3) and the Dantzig solution (5) are identical for any value of λ > 0

(Lasso and Dantzig share the same path).

Proof. First, define the vector g(β) = XT (Y − Xβ) ∈ R
p containing

the correlation of the residuals with the original predictor variables. The

Lasso solution is unique under condition (8). A necessary and sufficient

condition for a vector β to be the Lasso solution is, by the Karush-Kuhn-

Tucker conditions (Bertsekas, 1995), that (a) for all k: gk(β) ∈ [−λ, λ] and

(b) for all k ∈ {l : βl 6= 0} it holds that gk(β) = λ sign(βk). We show that

the Dantzig solution (5) is a valid Lasso solution under diagonal dominance

(8). The Dantzig fulfills condition (a) by construction.

We now show that the (unique) Dantzig solution satisfies also (b). Assume

to the contrary that β is a solution of the Dantzig and there is some j ∈

{k : βk 6= 0} such that gj(β) ∈ [−λ, λ] but gj(β) 6= λ sign(βj). Let δ ∈ R
p

be a vector with δk = 0 for all k 6= j and δj = sign(βj) and define γ =



LASSO, L2BOOSTING AND THE DANTZIG 9

−(XT X)−1δ. We have g(β + νγ) = g(β) + νδ, so only the j-th component

of the vector of correlations is changed by an amount ν sign(βj). Since we

have assumed |gj(β)| < λ, there exists some ν > 0, such that β + νγ is still

in the feasible region.

To complete the proof we now show that, under the diagonal dominance

condition (8), the ℓ1-norm of β + νγ will be smaller than the ℓ1-norm of β

for small values of ν. Denote by β−j the vector with entries identical to β,

except for the j-th component, which is set to zero. We can write:

‖β + νγ‖1 ≤ ‖β−j‖1 + ν‖γ−j‖1 + |βj + νγj|

≤ ‖β−j‖1 + ν
∑

k 6=j

|Mkj| + |βj | − νMjj

= ‖β‖1 − ν(Mjj −
∑

k 6=j

|Mkj|).

where the first inequality results from using the triangular inequality twice

and the second inequality stems from γk = −Mkjsign(βj) with M = (XT X)−1.

It thus holds that ,for small enough values of ν > 0, the right hand side is

smaller than ‖β‖1 under the diagonal dominance condition (8). Hence, the

vector β with gj(β) 6= λ sign(βj) cannot be the Dantzig solution. We con-

clude that the Dantzig solution must fulfill properties (a) and (b) and thus

coincides with the Lasso solution (3).

As alluded to earlier, the Dantzig selector needs the true σ to be applied

to real world data. One obvious choice is to use the Dantzig path and cross-

validation. This gives another reason for obtaining the whole path. We define

our data-driven Dantzig selector (DD) by computing σ̂2
CV – the smallest 5-

fold cross-validated mean squared error over the Dantzig path – and plugging

it into λp(σ̂CV ). Needless to say, this estimator is not without its problems:
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Fig 2. Regularization paths from a single realization for each setup (a),(b), and (c) for
L2Boosting (first row), Lasso (second row), and Dantzig (third row). The Dantzig path is
jittery for very correlated design (large value of ρ). The end of the paths (for λ→ 0) agree
for Dantzig and Lasso.

one being that the cross-validated error might not be a good estimate of

the prediction error in the p ≫ n case and the other that it might over-

estimate σ2. However, we decide to use it because it is sensible and simple.

We later compare the performance of the data-driven Dantzig selector with

the Dantzig estimator corresponding to the λ̂CV chosen as the minimizer of

the cross-validated mean squared error.

A more realistic simulation example is in order for further comparisons of

Lasso and Dantzig. The following simulation example reflects the common

p > n situation seen in recent real world data applications. L2Boosting,
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Lasso and Dantzig will be contrasted against each other in terms of al-

gorithmic and performance behaviors. Path smoothness will be examined

and statistical performance criteria include MSE on β, MSE on regression

function Xβ, and a variable selection quality plot (i.e. correctly selected

variables relative to falsely selected variables). In addition, we vary signal to

noise ratio and correlation level of the predictors to bring out more insight.

Lasso, L2Boosting and Dantzig: p > n and correlated predictors. We con-

sider random design with p = 60 variables and n = 40. Predictor variables

have a multivariate Gaussian distribution X ∼ N (0,Σ), where the pop-

ulation covariance matrix Σ of the predictor variables is Toeplitz, that is

Σij = ρ|i−j| for all 1 ≤ i, j ≤ p. The response vector Y is obtained as in (1),

Y = Xβ∗ + σ ǫ,(9)

where ǫ = (ǫ1, . . . , ǫn) is i.i.d. noise with a standard Gaussian distribution.

The p-dimensional vector β∗ is drawn once from a standard Gaussian dis-

tribution and all but 10 randomly selected coefficients are set to zero. To be

precise, the true parameter vector β∗ used has entries

−0.65,−0.38,−0.37,−0.27,−0.12,−0.08, 0.05, 0.24, 0.37, 0.41,

for components 60, 2, 21, 49, 20, 27, 4, 43, 51, 32, with all other components

equally zero. Three simulation set-ups are (a): ρ = 0, σ = 0.2; (b): ρ =

0.9, σ = 0.2; (c): ρ = 0.9, σ = 0.6. The vector β∗ is rescaled in each case so

that ‖Xβ∗‖2
2 = n. We do not include the case that ρ = 0 and σ = 0.6 for

the results are similar to (a).

Computing the solution path for both Lasso and L2Boosting took un-

der half a second of CPU time each, using the LARS software in R of
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Fig 3. For the three setups (a), (b), and (c), the first row shows the MSEs on β of the
Dantzig, the Lasso and L2Boosting solution as a function of the regularization parameter
λ, averaged over 50 simulations. All three methods perform approximately equally well,
with the exception of setting (b), where Dantzig performs worse. The vertical dotted line
indicates the proposed fixed value of λp(σ). The second row compares the solutions obtained
by using the data-driven (λDD) and the cross-validation (λCV ) tuning of the regularization
parameter. In general, cross-validation gives a better fit except for the third setting (c)
where the MSE on β favors the conservative data-driven Dantzig selector. The next two
rows show comparable plots for the MSEs on Xβ. Here, the difference between all three
methods is even smaller. For all three setups, the cross-validation tuned regularization
parameter λCV always results in a better MSE on Xβ or a better predictive performance
than its data-driven Dantzig selector counterpart λDD.
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Fig 4. The average number of correctly selected variables as a function of the number of
falsely selected variables, averaged over 50 simulations. The straight line corresponds to
the performance under random selection of variables. Filled triangles indicate the solution
under λDD, whereas the solution for λCV is marked by squares.

(Efron et al., 2004). Computing the solution path of the Dantzig for 200

distinct values of the regularization parameter λ took more than 30 seconds

on the same computer, using either a standard C linear programming library

lp solve (called from R) or the Matlab code supplied in the ℓ1-magic pack-

age (Candes, 2006). The relative long running time for the current Dantzig

algorithms makes it necessary to develop a path following algorithm. As

mentioned before, the Dantzig path could have jumps and, as a result, its

path following algorithm could be somewhat more involved as in Li and Zhu

(2006).

Other simulations with different randomly chosen sparse β∗’s have been

conducted and yielded similar results as to be demonstrated with this par-

ticular choice of β∗. In almost all cases, Lasso and L2boosting outperform

Dantzig and the Dantzig path is more jittery; when signal to noise ratio

is relatively high and the predictors are highly correlated, the performance

gain of L2Boosting and Lasso over Dantzig can not be ignored.

Now let us look into the details of the results in Fig. 2, 3 and 4. Fig.
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2 display path plots under (a), (b) and (c) for a single realization of the

linear model (9). The horizontal axes are scaled so that the path plots are

comparable. Given everything else being equal, a correlation increase or an

SNR decrease makes the path more jittery for all three methods, with various

degrees. Across methods, L2Boosting’s path is most smooth, Lasso’s is less

smooth and Dantzig’s is most jittery. Moreover, under the same simulation

set-up, the branching points from zero of the three methods are quite similar

although the path smoothness differ.

Does the smoothness/jittery property of the path of a method readily

translate into meaningful performance properties? Fig. 3 and 4 attempt to

answer this question. The first one shows that in terms of both MSEs, Lasso

and L2Boosting are similar and in general better than Dantzig over the

whole path. The improvement of Lasso or L2Boosting over Dantzig is more

pronounced for the MSE on β than that on Xβ. The middle column in Fig. 3,

with high correlation between predictors and high SNR, shows the worst case

for Dantzig, relative to L2Boosting and Lasso. Such results are in terms of

both MSEs, with the MSE for β worse than the MSE for Xβ. This indicates

qualitatively a regime where, when correlation and SNR are matched in

some way, Dantzig is worse off than L2Boosting and Lasso. In other words,

Lasso and L2Boosting are more effective to extract statistical information.

With the same high correlation, however, when the SNR decreases (as shown

in the right column of Fig. 3), the statistical problem becomes hard for all

of them and the advantage of Lasso and L2Boosting diminishes. For both

MSEs, CV selects better tuning parameters for all three methods than the

data-driven Dantzig (DD) with the exception of setup (c). In this setup,
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the noise level is high and so is the correlation level, estimating individual

β’s becomes difficult and hence it is better to be conservative as λDD to

set many β’s to zero (cf. the rightmost plot in the second row of Fig. 3).

However, when the performance measure is on prediction or the MSE on

Xβ, λCV does better again than λDD (cf. the rightmost plot in the fourth

row of Fig. 3).

Last but not least, we assess the model selection prospect of the three

methods with the CV-selected or the DD-selected tuning parameter λ. Fig.

4 contains three plots under the three simulation setups. The horizontal axis

plots the number of falsely selected variables and the vertical gives the cor-

responding correctly selected variables. Within each plot, the straight line

gives the result of randomly selection of predictors; the solid curved line is

Dantzig, dashed line is Lasso and dotted line is L2Boosting. The triangles

indicate the DD selection and squares the CV selection of tuning param-

eters, for each method depending on the curve that the symbol is sitting.

Obviously, all methods do better than random selection and the gain is high-

est when the predictors are not correlated. The gain is reduced when the

correlation is high, but with a larger gain in the case of high SNR (middle

plot) than the low SNR case (right plot). In particular, the most differentiat-

ing case is setup (b): high correlation and high SNR. For all three methods,

CV would pick up two or three more correct predictors with the same false

predictors as random selection, and there is a slight but definite advantage

of L2Boosting and Lasso over Dantzig. For high correlation and low SNR,

only one or two correct ones can be gained over random selection of the

same number of falsely selected predictors. Clearly, DD is very conservative



16 N. MEINSHAUSEN, G. ROCHA AND B. YU

to select very few predictors for all three methods while CV has a tendency

to include too many noise variables for low SNR – this is well-known and

has already been studied in more detail in (Leng et al., 2006; Meinshausen

and Bühlmann, 2006). Nevertheless, for all three methods CV seems to give

a better balance on the total number of correct predictors and false predic-

tors. For any choice of the regularization parameter, L2Boosting and Lasso

are in general no worse and sometimes better than Dantzig.

3. Concluding remarks. In this discussion, we have attempted to un-

derstand the Dantzig selector in relation to its cousins Lasso and L2Boosting.

We believe that computing Dantzig or the Lasso for a single value of the

penalty parameter λ does not work well in practice; we need the entire

solution path to select a meaningful model with good predictive perfor-

mance. Without a path-following algorithm, computing the solution path

for Dantzig is computationally very intensive (which is the reason we were

limited to rather small data sets for the numerical examples). Leaving aside

computational aspects, the first visual impression of the Dantzig solution

path is its jitteriness when compared to the much smoother Lasso or L2Boosting

solution paths, especially for highly correlated predictor variables. However,

we showed that the smoothness of the path is not always indicative of per-

formance. For the same regularization parameter, Lasso and L2Boosting

performed in all settings at least as well as the Dantzig selector (and some-

times substantially better) and Dantzig performs on par with Lasso and

Boosting for low signal to noise ratio even though its path is much more

jittery. For almost all settings considered, the regularization parameter se-

lected by cross-validation gives better MSE’s than the data-driven Dantzig
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selector. In summary, we have not yet seen compelling evidence that would

persuade us to use in practice the Dantzig rather than Lasso or L2Boosting.
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