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Abstract. We present a (selective) review of recent frequentist high-
dimensional inference methods for constructing p-values and confidence
intervals in linear and generalized linear models. We include a broad,
comparative empirical study which complements the viewpoint from
statistical methodology and theory. Furthermore, we introduce and il-
lustrate the R-package hdi which easily allows the use of different meth-
ods and supports reproducibility.
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1. INTRODUCTION

Over the last 15 years, a lot of progress has been achieved in high-dimensional statistics where
the number of parameters can be much larger than sample size, covering (nearly) optimal point
estimation, efficient computation, and applications in many different areas; see for example the
books by Hastie et al. (2009), Bühlmann and van de Geer (2011) or the review article by Fan and
Lv (2010). The core task of statistical inference accounting for uncertainty, in terms of frequen-
tist confidence intervals and hypothesis testing, is much less developed. Recently, a few methods
for assigning p-values and constructing confidence intervals have been suggested (Wasserman and
Roeder, 2009; Meinshausen et al., 2009; Bühlmann, 2013; Zhang and Zhang, 2014; Lockhart et al.,
2014; van de Geer et al., 2014; Javanmard and Montanari, 2013; Meinshausen, 2013).

The current paper has three main pillars: (i) a (selective) review of the development in fre-
quentist high-dimensional inference methods for p-values and confidence regions; (ii) presenting
the first broad, comparative empirical study among different methods, mainly for linear models:
since the methods are mathematically justified under non-checkable and sometimes non-comparable
assumptions, a thorough simulation study should lead to additional insights about reliability and
performance of various procedures; (iii) presenting the R-package hdi (high-dimensional inference)
which enables to easily use many of the different methods for inference in high-dimensional general-
ized linear models. In addition, we include a recent line of methodology allowing to detect significant
groups of highly correlated variables which could not be inferred as individually significant single
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variables (Meinshausen, 2013). The review and exposition in Bühlmann et al. (2014a) is vaguely
related to points (i) and (iii) above, but much more focusing on an application oriented viewpoint
and covering much less statistical methodology, theory and computational details.

Our comparative study, the point (ii) mentioned above, exhibits interesting results indicating that
more “stable” procedures based on Ridge-estimation or random sample splitting with subsequent
aggregation are somewhat more reliable for type I error control than asymptotically power-optimal
methods. Such results cannot be obtained by comparing underlying assumptions of different meth-
ods, since these assumptions are often too crude and far from necessary. As expected, we are unable
to pinpoint to a method which is (nearly) best in all considered scenarios. In view of this, we also
want to offer a collection of useful methods for the community, in terms of our R-package hdi

mentioned in the point (iii) above.

2. INFERENCE FOR LINEAR MODELS

We consider first a high-dimensional linear model, while extensions are discussed in Section 3:

Y = Xβ0 + ε(2.1)

with n×p fixed or random design matrix X, n×1 response and error vectors Y and ε, respectively.
The errors are assumed to be independent of X (for random design) with i.i.d. entries having
E[εi] = 0. We allow for high-dimensional settings where p � n. In the further development, the
active set or the set of relevant variables

S0 = {j; β0j 6= 0, j = 1, . . . , p},

as well as its cardinality s0 = |S0|, are important quantities. The main goals of this section
are the construction of confidence intervals and p-values for individual regression parameters
β0j (j = 1, . . . , p) and corresponding multiple testing adjustment. The former is a highly non-
standard problem in high-dimensional settings while for the latter we can use standard well-known
techniques: when considering both goals simultaneously, though, one can develop more powerful
multiple testing adjustments. The Lasso (Tibshirani, 1996) is among the most popular procedures
for estimating the unknown parameter β0 in a high-dimensional linear model. It exhibits desirable
or sometimes even optimal properties for point estimation such as prediction of Xβ0 or of a new
response Ynew, estimation in terms of ‖β̂−β0‖q for e.g. q = 1, 2, and variable selection or screening;
see for example in the book of Bühlmann and van de Geer (2011). For assigning uncertainties in
terms of confidence intervals or hypothesis testing, however, the plain Lasso seems inappropriate:
it is very difficult to characterize the distribution of the estimator in the high-dimensional set-
ting: Knight and Fu (2000) derive asymptotic results for fixed dimension as sample size n → ∞
and already for such simple situations, the asymptotic distribution of the Lasso has point mass
at zero. This implies, because of non-continuity of the distribution, that standard bootstrapping
and subsampling schemes are delicate to apply and uniform convergence to the limit seems hard to
achieve. The latter means that the estimator is exposed to undesirable super-efficiency problems,
as illustrated in Section 2.4. All the problems mentioned are expected to apply not only for the
Lasso but for other sparse estimators as well.

In high-dimensional settings and for general fixed design X, the regression parameter is not iden-
tifiable. However, when making some restrictions on the design, one can ensure that the regression
vector is identifiable. The so-called compatibility condition on the design X (van de Geer, 2007)
is a rather weak assumption (van de Geer and Bühlmann, 2009) which guarantees identifiability
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and oracle (near) optimality results for the Lasso. For the sake of completeness, the compatibility
condition is described in the Appendix A.1.

When assuming the compatibility condition with constant φ20 (φ20 is close to zero for rather ill-
posed designs, and sufficiently larger than zero for well-posed designs), the Lasso has the following
property: for Gaussian errors and if λ �

√
log(p)/n, we have with high probability that

‖β̂ − β0‖1 ≤ 4s0λ/φ
2
0.(2.2)

Thus, if s0 �
√
n/ log(p) and φ20 ≥ M > 0, we have ‖β̂ − β0‖1 → 0 and hence, the parameter β0

is identifiable.
Another often-used assumption, although not necessary by any means, is the so-called beta-min

assumption:

min
j∈S0

|β0j | ≥ βmin,(2.3)

for some choice of constant βmin > 0. The result in (2.2) immediately implies the screening property:
if βmin > 4s0λ/φ

2
0, then

Ŝ = {j; β̂j 6= 0} ⊇ S0.(2.4)

Thus, the screening property holds when assuming the compatibility and beta-min condition. The
power of the screening property is a massive dimensionality reduction (in the original variables)
because |Ŝ| ≤ min(n, p); thus, if p � n, the selected set Ŝ is much smaller than the full set of p
variables. Unfortunately, the required conditions are overly restrictive and exact variable screening
seems rather unrealistic in practical applications (Bühlmann and Mandozzi, 2014).

2.1 Different methods

We describe here three different methods for construction of statistical hypothesis tests or con-
fidence intervals. Alternative procedures are presented in Sections 2.3 and 2.4.

2.1.1 Multi sample-splitting A generic way for deriving p-values in hypotheses testing is given
by splitting the sample with indices {1, . . . , n} into two equal halves denoted by I1 and I2, i.e.,
Ir ⊂ {1, . . . , n} (r = 1, 2) with |I1| = bn/2c, |I2| = n − bn/2c, I1 ∩ I2 = ∅ and I1 ∪ I2 = {1, . . . n}.
The idea is to use the first half I1 for variable selection and the second half I2 with the reduced set
of selected variables (from I1) for statistical inference in terms of p-values. Such a sample-splitting
procedure avoids the over-optimism to use the data twice for selection and inference after selection
(without taking the effect of selection into account).

Consider a method for variable selection based on the first half of the sample:

Ŝ(I1) ⊂ {1, . . . , p}.

A prime example is the Lasso which selects all the variables whose corresponding estimated regres-
sion coefficients are different from zero. We then use the second half of the sample I2 for constructing
p-values, based on the selected variables Ŝ(I1). If the cardinality |Ŝ(I1)| ≤ n/2 ≤ |I2|, we can run
ordinary least squares estimation using the subsample I2 and the selected variables Ŝ(I1), i.e., we

regress YI2 on X
(Ŝ(I1))
I2

where the sub-indices denote the sample half and the super-index stands for
the selected variables, respectively. Thereby, we implicitly assume that the matrix XI2,Ŝ(I1)

has full

rank |Ŝ(I1)|. Thus, from such a procedure, we obtain p-values Pt−test,j for testing H0,j : β0j = 0, for
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j ∈ Ŝ(I1), from the classical t-tests, assuming Gaussian errors or relying on asymptotic justification
by the central limit theorem. To be more precise, we define (raw) p-values

Praw,j =

{
Pt−test,j based on YI2 ,X

(Ŝ(I1))
I2

if j ∈ Ŝ(I1),

1 if j /∈ Ŝ(I1).

An interesting feature of such a sample-splitting procedure is the adjustment for multiple testing.
For example, if we wish to control the familywise error rate over all considered hypotheses H0,j (j =
1, . . . , p), a naive approach would employ a Bonferroni-Holm correction over the p tests. This is not
necessary: we only need to control over the considered |Ŝ(I1)| tests in I2. Therefore, a Bonferroni
corrected p-value for H0,j is given by

Pcorr,j = min(Praw,j · |Ŝ(I1)|, 1).

In high-dimensional scenarios, p � n > bn/2c = |Ŝ(I1)|, where the latter inequality is an implicit
assumption which holds for the Lasso (under weak assumptions), and thus, the correction factor
employed here is rather small. Such corrected p-values control the familywise error rate in multiple
testing when assuming the screening property in (2.4) for the selector Ŝ = Ŝ(I1) based on the first
half I1 only, exactly as stated in Fact 1 below. The reason is that the screening property ensures
that the reduced model is a correct model, and hence the result is not surprising. In practice, the
screening property typically does not hold exactly but it is not a necessary condition for constructing
valid p-values Bühlmann and Mandozzi (2014).

The idea about sample-splitting and subsequent statistical inference is implicitly contained in
Wasserman and Roeder (2009). We summarize the whole procedure as follows:

Single sample-splitting for multiple testing of H0,j among j = 1, . . . , p:

1. Split (partition) the sample {1, . . . , n} = I1 ∪ I2 with I1 ∩ I2 = ∅ and |I1| = bn/2c and
|I2| = n− bn/2c.

2. Using I1 only, select the variables Ŝ ⊆ {1, . . . , p}. Assume or enforce that |Ŝ| ≤ |I1| = bn/2c ≤
|I2|.

3. Denote the design matrix with the selected set of variables by X(Ŝ). Based on I2 with data

(YI2 ,X
(Ŝ)
I2

), compute p-values Praw,j for H0,j , for j ∈ Ŝ, from classical least squares estimation

(i.e. t-test which can be used since |Ŝ(I1)| ≤ |I2|). For j /∈ Ŝ, assign Praw,j = 1.
4. Correct the p-values for multiple testing: consider

Pcorr,j = min(Pj · |Ŝ|, 1)

which is an adjusted p-value for H0,j for controlling the familywise error rate.

A major problem of the single sample-splitting method is its sensitivity with respect to the
choice of splitting the entire sample: sample splits lead to wildly different p-values. We call this
undesirable phenomenon a p-value lottery, and Figure 1 provides an illustration. To overcome the
“p-value lottery” we can run the sample-splitting method B times, with B large. Thus, we obtain
a collection of p-values for the jth hypothesis H0,j :

P
[1]
corr,j , . . . , P

[B]
corr,j (j = 1, . . . , p).
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Fig 1. Histogram of p-values Pcorr,j for a single covariable, in the riboflavin data-set, when doing 50 different
(random) sample splits. The figure is taken from Bühlmann et al. (2014a).

The task is now to do an aggregation to a single p-value. Because of dependence among {P [b]
corr,j ; b =

1, . . . , B}, because all the different halve samples are part of the same full sample, an appropriate
aggregation needs to be developed. A simple solution is to use an empirical γ-quantile with 0 <
γ < 1:

Qj(γ) = min
(

emp. γ-quantile{P [b]
corr,j/γ; b = 1, . . . , B}, 1

)
.

For example, with γ = 1/2, this amounts to taking the sample median {P [b]
corr,j ; b = 1, . . . , B} and

multiply it with the factor 2. A bit more sophisticated approach is to choose the best and properly
scaled γ-quantile in the range (γmin, 1) (e.g., γmin = 0.05), leading to the aggregated p-value

Pj = min

(
(1− log(γmin)) inf

γ∈(γmin,1)
Qj(γ)

)
(j = 1, . . . , p).(2.5)

Thereby, the factor (1−log(γmin)) is the price to be paid for searching for the best γ ∈ (γmin, 1). This
Multi sample-splitting procedure has been proposed and analyzed in Meinshausen et al. (2009), and
we summarize it below. Before doing so, we remark that the aggregation of dependent p-values as
described above is a general principle as described in the Appendix A.1.

Multi sample-splitting for multiple testing of H0,j among j = 1, . . . , p:

1. Apply the single sample-splitting procedureB times leading to p-values {P [b]
corr,j ; b = 1, . . . , B}.

Typical choices are B = 50 or B = 100.
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2. Aggregate these p-values as in (2.5) leading to Pj which are adjusted p-values for H0,j (j =
1, . . . , p), controlling the familywise error rate.

The Multi sample-splitting method enjoys the property that the resulting p-values are approxi-
mately reproducible and not subject to a “p-value lottery” anymore, and it controls the familywise
error rate under the following assumptions:

(A1) The screening property as in (2.4) for the first half of the sample: P[Ŝ(I1) ⊇ S0] ≥ 1− δ for
some 0 < δ < 1.

(A2) The reduced design matrix for the second half of the sample satisfies: rank(X
(Ŝ(I1))
I2

) = |Ŝ(I1)|.

Fact 1. (Meinshausen et al. (2009))
Consider a linear model as in (2.1) with fixed design X and Gaussian errors. Assume (A1)–(A2).
Then, for a significance level 0 < α < 1 and denoting by B the number of sample splits:

P[∪j∈Sc
0
I(Pj ≤ α)] ≤ α+Bδ,

that is, the familywise error rate (FWER) is controlled up to the additional (small) value Bδ.

A proof is given in Meinshausen et al. (2009). Assumption (A2) typically holds for sparse estimators
such as the Lasso satisfying |Ŝ(I1)| ≤ |I1| = bn/2c ≤ |I2| = n− bn/2c.

The screening property (A1). The screening property (A1) is not a necessary condition for
constructing valid p-values and can be replaced by a zonal assumption requiring the following:
there is a gap between large and small regression coefficients and there are not too many small non-
zero regression coefficients Bühlmann and Mandozzi (2014). Still, such a zonal assumption makes
a requirement about the unknown β0 and the absolute values of its components: but this is the
essence of the question in hypothesis testing to infer whether coefficients are sufficiently different
from zero, and one would like to do such a test without an assumption on the true values.

The Lasso satisfies (A1) when assuming the compatibility condition (A.1) on the design X and
a beta-min condition (2.3), as shown in (2.4). Again, the beta-min assumption should be avoided
when constructing a hypothesis test about the unknown components of β0.

Fact 1 has a corresponding asymptotic formulation where the dimension p = pn and the model
depend on sample size n: if (A1) is replaced by limn→∞ P[Ŝ(I1;n) ⊇ S0;n]→ 1 and for a fixed number
B, lim supn→∞ P[∪j ∈ Sc0I(Pj ≤ α)] ≤ α. In such an asymptotic setting, the Gaussian assumption
in Fact 1 can be relaxed by invoking the central limit theorem (for the low-dimensional part).

The Multi sample-splitting method is very generic: it can be used for many other models, and its
basic assumptions are an approximate screening property (2.4) and that the cardinality |Ŝ(I1)| <
|I2| so that we only have to deal with a fairly low-dimensional inference problem. See for example
Section 3 for GLMs. An extension for testing group hypotheses of the form H0,G : βj = 0 for all
j ∈ G is indicated in Section 4.1.

Confidence intervals can be constructed based on the duality with the p-values from equation
(2.5). A procedure is described in detail in the Appendix A.2. The idea to invert the p-value method
is to apply a bisection method having a point in and a point outside of the confidence interval. To
verify if a point is inside the aggregated confidence interval, one looks at the fraction of confidence
intervals from the splits which cover the point.
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2.1.2 Regularized projection: de-sparsifying the Lasso We describe here a method, first intro-
duced by Zhang and Zhang (2014), which does not require an assumption about β0 except for
sparsity.

It is instructive to give a motivation starting with the low-dimensional setting where p < n and
rank(X) = p. The jth component of the ordinary least squares estimator β̂OLS;j can be obtained as
follows. Do an OLS regression of X(j) versus all other variables X(−j) and denote the corresponding
residuals by Z(j). Then:

β̂OLS;j = Y TZ(j)/(X(j))TZ(j)(2.6)

can be obtained by a linear projection. In a high-dimensional setting, the residuals Z(j) would be
equal to zero and the projection is ill-posed.

For the high-dimensional case with p > n, the idea is to pursue a regularized projection. Instead of
ordinary least squares regression, we use a Lasso regression of X(j) versus X(−j) with corresponding
residual vector Z(j): such a penalized regression involves a regularization parameter λj for the Lasso,
and hence Z(j) = Z(j)(λj). As in (2.6), we immediately obtain (for any vector Z(j)):

Y TZ(j)

(X(j))TZ(j)
= β0 +

∑
k 6=j

Pjkβ
0
k +

εTZ(j)

(X(j))TZ(j)
,

Pjk = (X(k))TZ(j)/(X(j))TZ(j).(2.7)

We note that in the low-dimensional case with Z(j) being the residuals from ordinary least squares,
due to orthogonality, Pjk = 0. When using the Lasso-residuals for Z(j), we do not have exact
orthogonality and a bias arises. Thus, we make a bias correction by plugging in the Lasso estimator
β̂ (of the regression Y versus X): the bias-corrected estimator is

b̂j =
Y TZ(j)

(X(j))TZ(j)
−
∑
k 6=j

Pjkβ̂k.(2.8)

Using (2.7) we obtain:

√
n(b̂j − β0j ) =

n−1/2εTZ(j)

n−1(X(j))TZ(j)
+
∑
k 6=j

√
nPjk(β̂k − β0k).

The first term on the right-hand side has a Gaussian distribution, when assuming Gaussian errors;
otherwise, it has an asymptotic Gaussian distribution assuming that E|εi|2+κ < ∞ for κ > 0. We
will argue in Appendix A.1 that the second term is negligible under the following assumptions:

(B1) The design matrix X has compatibility constant bounded away from zero, and the sparsity
is s0 = o(

√
n/ log(p)).

(B2) The rows of X are fixed realizations of i.i.d. random vectors ∼ Np(0,Σ), and the minimal
eigenvalue of Σ is bounded away from zero.

(B3) The inverse Σ−1 is row-sparse with sj =
∑

k 6=j I(Σ−1jk 6= 0) = o(n/ log(p)).

Fact 2. (van de Geer et al., 2014) Consider a linear model as in (2.1) with fixed design and
Gaussian errors. Assume (B1) and (B2). Then,

√
nσ−1ε (b̂− β0) = W + ∆,

W ∼ Np(0,Ω), Ωjk =
(Z(j))TZ(k)

[(X(j))TZ(j)][(X(k))TZ(k)]
,

‖∆‖∞ = oP (1).
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The asymptotic implications of Fact 2 are as follows:

σ−1ε Ω
−1/2
jj

√
n(b̂j − β0j )⇒ N (0, 1),

from which we can immediately construct a confidence interval or hypothesis test by plugging in
an estimate σ̂ε as briefly discussed in 2.1.4.

More general than the statements in Fact 2, the following holds assuming additionally (B3)
(van de Geer et al., 2014): the asymptotic variance σ2εΩjj reaches the Cramer-Rao lower bound,

which equals σ2εΣ
−1
jj , and the estimator b̂j is efficient in the sense of semiparametric inference.

Furthermore, the convergence in Fact 2 is uniform over the subset of the parameter space where
the number of non-zero coefficients ‖β0‖0 is small. and therefore, we obtain honest confidence
intervals and tests. In particular, both of these results say that all the complications in post-model
selection do not arise (Leeb and Pötscher, 2003) and yet, b̂j is optimal for construction of confidence
intervals of a single coefficient β0j .

From a practical perspective, we need to choose the regularization parameters λ (for the Lasso
regression of Y versus X) and λj (for the nodewise Lasso regressions (Meinshausen and Bühlmann,
2006) of X(j) versus all other variables X(−j)). Regarding the former, we advocate a choice using
cross-validation; for the latter, we favor a proposal for a smaller λj than the one from CV, and the
details are described in the Appendix A.1.

Furthermore, for a group G ⊆ {1, . . . , p}, we can test a group hypothesis H0,G : β0j = 0 for all
j ∈ G by considering the test-statistic

max
j∈G

σ−1ε Ω
−1/2
jj

√
n|b̂j | ⇒ max

j∈G
Ω
−1/2
jj |Wj |,

where the limit on the right hand side occurs if the null-hypothesis H0,G holds true. The distribution

of maxj∈G |Ω−1/2jj Wj | can be easily simulated from dependent Gaussian random variables. We also
remark that sum-type statistics for large groups cannot be easily treated because

∑
j∈G |∆j | might

get out of control.

2.1.3 Ridge projection and bias correction Related to the de-sparsified Lasso estimator b̂ in
(2.8) is an approach based on Ridge estimation. We sketch here the main properties and refer to
Bühlmann (2013) for a detailed treatment.

Consider

β̂Ridge = (n−1XTX + λI)−1n−1XTY.

A major source of bias occurring in Ridge estimation when p > n comes from the fact that the
Ridge estimator is estimating a projected parameter

θ0 = PRβ
0, PR = XT (XXT )−X,

where (XXT )− denotes a generalized inverse of XXT . The minor bias for θ0 then satisfies:

max
j
|E[β̂Ridge;j ]− θ0j | ≤ λ‖θ0‖2λmin 6=0(Σ̂)−1,

where λmin 6=0(Σ̂) denotes the minimal non-zero eigenvalue of Σ̂ (Shao and Deng, 2012). The quantity
can be made small by choosing λ small. Therefore, for λ ↘ 0+ and assuming Gaussian errors we
have that

σ−1ε (β̂Ridge − θ0) ≈W, W ∼ Np(0,ΩR),(2.9)
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where ΩR = (Σ̂ + λ)−1Σ̂(Σ̂ + λ)−1. Since

θ0

PR;jj
= β0j +

∑
k 6=j

PR;jk

PR;jj
β0k,

the major bias for β0j can be estimated and corrected with

∑
k 6=j

PR;jk

PR;jj
β̂k,

where β̂ is the ordinary Lasso. Thus, we construct a bias corrected Ridge estimator, which addresses
the potentially substantial difference between θ0 and the target β0:

b̂R;j =
β̂Ridge;j

PR;jj
−
∑
k 6=j

PR;jk

PR;jj
β̂k, j = 1, . . . , p.(2.10)

Based on (2.9) we derive in Appendix A.1 that

σ−1ε Ω
−1/2
R;jj (b̂R;j − β0j ) ≈ Ω

−1/2
R;jj Wj + σ−1ε Ω

−1/2
R;jj ∆R;j , W ∼ Np(0,ΩR),

|∆R;j | ≤ ∆Rbound;j := max
k 6=j

∣∣∣∣PR;jk

PR;jj

∣∣∣∣ (log(p)/n)1/2−ξ,(2.11)

with the typical choice ξ = 0.05. Sufficient conditions for deriving (2.11) are assumption (B1) and
that the sparsity satisfies s0 = O((n/ log(p))ξ) for ξ as above.

Unlike as in Fact 2, the term ∆R;j is typically not negligible and we correct the Gaussian part
in (2.11) by the upper bound ∆Rbound;j . For example, for testing H0,j : β0j = 0 we use the upper
bound for the p-value

2(1− Φ(σ−1ε Ω
−1/2
R;jj |PR;jj |(|b̂R;j | −∆Rbound;j)+)).

Similarly, for two-sided confidence intervals with coverage 1− α we use

[b̂R;j − cj , b̂R;j + cj ],

cj = ∆Rbound;j + σεΩ
1/2
R;jj/|PR;jj |Φ−1(1− α/2).

For testing a group hypothesis for G ⊆ {1, . . . , p}, H0,G : β0j = 0 for all j ∈ G, we can
proceed similarly as at the end of Section 2.1.2: under the null-hypotheses H0,G, the statistic

σ−1ε maxj∈G Ω
−1/2
R;jj |b̂R;j | has a distribution which is approximately stochastically upper bounded by

max
j∈G

(Ω
−1/2
R;jj |Wj |+ |∆R;j |),

see also (2.11). When invoking an upper bound for ∆Rbound;j ≥ |∆R;j | as in (2.11), we can easily
simulate this distribution from dependent Gaussian random variables which in turn can be used to
construct a p-value: we refer for further details to Bühlmann (2013).
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2.1.4 Additional issues: estimation of the error variance and multiple testing correction Unlike
the Multi sample-splitting procedure in Section 2.1.1, the de-sparsified Lasso and Ridge projection
method outlined in Sections 2.1.2–2.1.3 require to plug-in an estimate of σε and to adjust for
multiple testing. The scaled Lasso (Sun and Zhang, 2012) leads to a consistent estimate of the
error variance: it is a fully automatic method which does not need any specification of a tuning
parameter. In Reid et al. (2013), an empirical comparison of various estimators suggests that the
estimator based on residual sum of squares of a cross-validated Lasso solution often yields good
finite-sample performance.

Regarding the adjustment when doing many test for individual regression parameters or groups
thereof, one can use any valid standard method to correct the p-values from the de-sparsified Lasso
or Ridge projection method. The prime example are the Bonferroni-Holm procedure for controlling
the familywise error rate or the method from Benjamini and Yekutieli (2001) for controlling the
false discovery rate. An approach for familywise error control which explicitly takes the dependence
among the multiple hypotheses is proposed in Bühlmann (2013), based on simulations for dependent
Gaussian random variables.

2.1.5 Conceptual differences between the methods We briefly outline here conceptual differences
while Section 2.4 presents empirical results.

The Multi sample-splitting method is very generic and in the spirit of Breiman’s appeal for
stability (Breiman, 1996a,b), it enjoys some kind of stability due to multiple sample splits and
aggregation. The disadvantage is that, in the worst case, the method needs a beta-min or a weaker
zonal assumption on the underlying regression parameters: this is somewhat unpleasant since a
significance test should find out whether a regression coefficient is sufficiently large or not.

Both the de-sparsified Lasso and Ridge projection procedures do not make any assumption on the
underlying regression coefficient except sparsity. The former is most powerful and asymptotically
optimal if the design were generated from a population distribution whose inverse covariance matrix
is sparse. Furthermore, the convergence is uniform over all sparse regression vectors and hence, the
method yields honest confidence regions or tests. The Ridge projection method does not require any
assumption on the fixed design but does not reach the asymptotic Cramer-Rao efficiency bound.
The construction with the additional correction term in (A.3) leads to reliable type I error control
at the cost of power.

In terms of computation, the Multi sample-splitting and Ridge projection method are substan-
tially less demanding than the de-sparsified Lasso.

2.2 hdi for linear models

In the R-package hdi, available on R-Forge (Meier et al., 2014) , we provide implementations for
the Multi sample-splitting, the Ridge projection and the de-sparsified Lasso method. Using the R
functions is straightforward:

> outMssplit <- multi.split(x = x, y = y)

> outRidge <- ridge.proj(x = x, y = y)

> outLasso <- lasso.proj(x = x, y = y)

For users that are very familiar with the procedures, we provide flexible options. For example,
we can easily use an alternative model selection or another “classical” fitting procedure using the
arguments model.selector and classical.fit in multi.split. The default options should be
satisfactory for standard usage.

All procedures return p-values and confidence intervals. The Ridge and de-sparsified Lasso meth-
ods return both single testing p-values as well as multiple testing corrected p-values unlike the Multi
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sample-splitting procedure which only returns multiple testing corrected p-values. The confidence
intervals are for individual parameters only (corresponding to single hypothesis testing).

The single-testing p-values and the multiple testing corrected p-values are extracted from the fit
as follows

> outRidge$pval

> outRidge$pval.corr

By default, we correct for controlling the familywise error rate for the p-values pval.corr.
Confidence intervals are acquired through the usual confint interface. Below we extract the 95

% confidence intervals for those p-values that are smaller than 0.05

> confint(outMssplit, parm = which(outMssplit$pval.corr <= 0.05), level = 0.95)

Due to the fact that the de-sparsified Lasso method is quite computationally intensive, we provide
the option to parallelize the method on a user-specified number of cores.

We refer to the manual of the package for more detailed information.

2.3 Other methods

Recently, a few other procedures have been suggested for construction of p-values and confidence
intervals.

Residual-type bootstrap approaches are proposed and analyzed in Chatterjee and Lahiri (2013)
and Liu and Yu (2013). A problem with these approaches is the non-uniform convergence to a
limiting distribution and exposure to the super-efficiency phenomenon: that is, if the true parameter
equals zero, a confidence region might be the singleton {0} (due to finite amount of bootstrap
resampling) while for non-zero true parameter values, the coverage might be very poor or big
length of the confidence interval.

The covariance test (Lockhart et al., 2014) is another proposal which relies on the solution path
of the Lasso and provides p-values for conditional tests that all relevant variables enter the Lasso
solution path first.

In Javanmard and Montanari (2013), a procedure was proposed that is very similar to the one
described in Section 2.1.2, with the only difference being that Z is picked as the solution of a convex
program, rather than using the Lasso. The method is aiming to relax the sparsity assumption (B3)
for the design.

A conservative Group-bound method which needs no regularity assumption for the design, e.g.
no compatibility assumption (A.1), has been proposed by Meinshausen (2013). The method has
the capacity to automatically determine whether a regression coefficient is identifiable or not, and
this makes the procedure very robust against ill-posed designs. The main motivation of the method
is in terms of testing groups of correlated variables, and we discuss it in more detail in Section 4.1.

While all the methods mentioned above are considered in a comparative simulation study in
Section 2.4, we refer to another procedure which we do not include in that study: based on stability
selection (Meinshausen and Bühlmann, 2010), Shah and Samworth (2013) propose a version which
leads to p-values for testing individual regression parameters.

2.4 A broad comparison

We compare a variety of methods on the basis of multiple testing corrected p-values and single
testing confidence intervals. The methods we look at are the multiple sample-splitting method MS-
Split (Section 2.1.1), the de-sparsified Lasso method Lasso-Pro (Section 2.1.2), the Ridge projection
method Ridge (Section 2.1.3), the covariance test Covtest (Section 2.3), the method by Javanmard
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and Montanari Jm2013 (Section 2.3) and the two bootstrap procedures mentioned in Section 2.3
(Res-Boot corresponds to Chatterjee and Lahiri (2013) and liuyu to Liu and Yu (2013)).

2.4.1 Specific details for the methods For the estimation of the error variance, for the Ridge
projection or the de-sparsified Lasso method, the scaled lasso is used as mentioned in Section 2.1.4.

For the choice of tuning parameters for the nodewise Lasso regressions (discussed in Section
2.1.2), we look at the two alternatives of using either cross-validation or our more favored alternative
procedure (denoted by Z&Z) discussed in the Appendix A.1.

We don’t look at the bootstrap procedures in connection with multiple testing adjustment due
to the fact that the required number of bootstrap samples grows out of proportion to go far enough
in the tails of the distribution; some additional importance sampling might help to address such
issues.

Regarding the covariance test, the procedure doesn’t directly provide p-values for the hypotheses
we are interested in. For the sake of comparison though, we use the interpretation as in Bühlmann
et al. (2014b). This interpretation doesn’t have a theoretical reasoning behind it and functions
more as a heuristic. Thus, the results of the covariance test procedure should be interpreted with
caution.

For the method Jm2013, we used our own implementation instead of the code provided by the
authors. The reason for this is that we had already implemented our own version when we discovered
that code was available and our own version was (orders of magnitude) better in terms of error
control. Posed with the dilemma of fair comparison, we stuck to the best performing alternative.

2.4.2 Data used For the empirical results, simulated design matrices as well as design matrices
from real data are used. The simulated design matrices are generated ∼ Np(0,Σ) with covariance
matrix Σ of the following three types:

Toeplitz: Σj,k = 0.9|j−k|,

Exp.decay: (Σ−1)j,k = 0.4|j−k|/5,

Equi.corr: Σj,k ≡ 0.8 for all j 6= k, Σj,j ≡ 1 for all j.

The sample size and dimension are fixed at n = 100 and p = 500, respectively. The design matrix
RealX from real gene expression data of Bacillus Subtilis (n = 71, p = 4088) was kindly provided
by DSM (Switzerland) and is publicly available (Bühlmann et al., 2014a). To make the problem
somewhat comparable in difficulty to the simulated designs, the number of variables is reduced to
p = 500 by taking the variables with highest empirical variance.

The cardinality of the active set is picked to be one of two levels s0 ∈ {3, 15}. For each of the
active set sizes, we look at 6 different ways of picking the sizes of the non-zero coefficients:

Randomly generated : U(0,2), U(0,4), U(-2,2),

A fixed value : 1, 2 or 10.

The positions of the non-zero coefficients as columns of the design X are picked at random.
Results where the non-zero coefficients were positioned to be the first s0 columns of X can be
found in Appendix A.3.

Once we have the design matrix X and coefficient vector β0, the responses Y are generated
according to the linear model equation with ε ∼ N (0, 1).
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2.4.3 P-values We investigate multiple testing corrected p-values for two-sided testing of the
null hypotheses H0,j : β0j = 0 for j = 1, . . . , p. We report the power and the familywise error rate
(FWER) for each method:

Power =
∑
j∈S0

P[H0,j is rejected]/s0,

FWER = P[∃j ∈ Sc0 : H0,j is rejected].

We calculate empirical versions of these quantities based on fitting 100 simulated responses Y
coming from newly generated ε.

For every design type, active set size and coefficient type combination we obtain 50 datapoints of
the empirical versions of “Power” and “FWER”, from 50 independent simulations. Thereby, each
datapoint has a newly generated X, β0 (if not fixed) and active set positions S0 ∈ {1 . . . p}: thus
the 50 datapoints indicate the variability with respect to the three quantities in the data generation
(for the same covariance model of the design, the same model for the regression parameter and its
active set positions). The datapoints are grouped in plots by design type and active set size.

We also report the average number of false positives AVG(V) over all data points per method
next to the FWER plot.

The results, illustrating the performance for various methods, can be found in Figures 2, 3, 4
and 5.

2.4.4 Confidence intervals We investigate confidence intervals for the one particular setup of
Toeplitz design, active set size s0 = 3 and coefficients β0j ∼ U [0, 2] (j ∈ S0). The active set
positions are chosen to be the first s0 columns of X. The results we show will correspond to a
single datapoint in the p-value results.

In Figure 6, 100 confidence intervals are plotted for each coefficient for each method. These
confidence intervals are the results of fitting 100 different responses Y resulting from newly generated
ε error terms.

For the Multi sample-splitting method from Section 2.1.1, if a variable did not get selected often
enough in the sample splits, there is not enough information to draw a confidence interval for it.
This is represented in the plot by only drawing confidence intervals when this wasn’t the case. If
the (uncheckable) beta-min condition (2.3) would be fulfilled, we would know that those confidence
intervals cover zero.

For the bootstrapping methods, an invisible confidence interval is the result of the coefficient
being set to zero in all bootstrap iterations.

2.4.5 Summarizing the empirical results As a first observation, the impact of the sparsity of the
problem on performance cannot be denied. The power clearly gets worse for s0 = 15 for the Toeplitz
and Exp.decay setups. The FWER becomes too high for quite a few methods for s0 = 15 in the
cases of Equi.corr and RealX.

For the sparsity s0 = 3, the Ridge projection method manages to control the FWER as desired
for all setups. In the case of s0 = 15, it is the Multi sample-splitting method that comes out best
in comparison to the other methods. Generally speaking, good error control tends to be associated
with a lower power which is not too surprising since we are dealing with the trade-off between type
I and type II errors. The de-sparsified Lasso method turns out to be a less conservative alternative
with not perfect but reasonable FWER control as long as the problem is sparse enough (s0 = 3).
The method has a slightly too high FWER for the Equi.corr and RealX setups but FWER around
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Fig 2. Familywise error rate (FWER), average number of false positive (AVG(V)) and power for multiple testing
based on various methods for a linear model. The desired control level for the FWER is α = 0.05. The average number
of false positives AVG(V) for each method is shown in the middle. The design matrix is of type Toeplitz, and the
active set size being s0 = 3 (top) and s0 = 15 (bottom).
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Fig 3. See caption of Figure 2 with the only difference being the type of design matrix. In this plot the design matrix
type is Exp.decay.
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Fig 4. See caption of Figure 2 with the only difference being the type of design matrix. In this plot, the design matrix
type is Equi.corr.
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Fig 5. See caption of Figure 2 with the only difference being the type of design matrix. In this plot, the design matrix
type is RealX.
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Fig 6. 100 confidence intervals and their empirical coverage of the true coefficients for a linear model. Black confidence
intervals cover the truth, red confidence intervals do not. The 15 zero coefficients shown are those with the worst
coverage for that method. The black numbers are the coverage rates in percentage. The numbers in the last column
are the average coverage rates of the zero coefficients Sc

0. The confidence intervals for the MS-Split method are only
drawn if the variable was selected in the sample-splitting procedure.

0.05 for Toeplitz and Exp.decay designs. Doing the Z&Z tuning procedure helps the error control
as can be seen most clearly in the Equi.corr setup.

The results for the simulations where the positions for the non-zero coefficients were not randomly
chosen, presented in Appendix A.3, largely give the same picture. In comparison to the results
presented before, the Toeplitz setup is easier while the Exp.decay setup is more challenging. The
Equi.corr results are very similar to the ones from before which is to be expected from the covariance
structure.

Looking into the confidence interval results, it is clear that the confidence intervals of the Multi
sample-splitting method and the Ridge projection method are wider than the rest. For the boot-
strapping methods, the super-efficiency phenomenon mentioned in Section 2.3 is visible. Important
to note here is that the smallest non zero coefficient, the third column, has very poor coverage from
these methods.

We can conclude that the coverage of the zero coefficients is decent for all methods and that the
coverage of the non-zero coefficients is in line with the error rates for the p-values.

Confidence interval results for many other setup combinations are provided in the appendix A.4.
The observations are to a large extent the same.
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3. GENERALIZED LINEAR MODELS

Consider a generalized linear model

Y1, . . . , Yn independent,

g(E[Yi|Xi = x]) = µ0 +

p∑
j=1

β0j x
(j),

where g(·) is a real-valued, known link function. As before, the goal is to construct confidence
intervals and statistical tests for the unknown parameters β01 , . . . , β

0
p , and maybe µ0 as well.

3.1 Methods

The Multi sample-splitting method can be modified for GLMs in an obvious way: the variable
screening step using the first half of the data can be based on `1-norm regularized MLE, and
p-values and confidence intervals using the second half of the sample are constructed from the
asymptotic distribution of the (low-dimensional) MLE. Multiple testing correction and aggregation
of the p-values from multiple sample splits are done exactly as for linear models in Section 2.1.1.

A de-sparsified Lasso estimator for GLMs can be constructed as follows (van de Geer et al.,
2014). The `1-norm regularized MLE θ̂ for the parameters θ0 = (µ0, β0) is de-sparsified with a
method based on the Karush-Kuhn-Tucker (KKT) conditions for θ̂, leading to an estimator with
an asymptotic Gaussian distribution. The Gaussian distribution can then be used to construct
confidence intervals and hypothesis tests.

3.2 Weighted squared error approach

The problem can be simplified in such a way that we can apply the approaches for the linear model
from Section 2. This can be done for all types of Generalized linear models (as shown in Appendix
A.5), but we restrict ourselves in this Section to the specific case of logistic regression. Logistic
regression is usually fitted by applying the iteratively reweighted least squares (IRLS) algorithm
where at every iteration one solves a weighted least squares problem (Hastie et al., 2009).

The idea is now to apply standard l1-penalized fitting of the model, build up the weighted least
squares problem at the l1-solution and then apply our linear model methods on this problem.

We use the notation π̂i, i = 1, . . . , n for the estimated probability of the binary outcome. π̂ is the
vector of these probabilities.

From Hastie et al. (2009), the adjusted response variable becomes

Yadj = Xβ̂ + W−1(Y − π̂),

and the weighted least squares problem is

β̂new = argminβ(Yadj −Xβ)TW (Yadj −Xβ),

with weights

W =


π̂1(1− π̂1) 0 . . . 0

0 π̂2(1− π̂2)
. . .

...
...

. . .
. . . 0

0 . . . 0 π̂n(1− π̂n)

 .

We rewrite, Yw =
√
WYadj and Xw =

√
WX to get

β̂new = argminβ(Yw −Xwβ)T (Yw −Xwβ).
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The linear model methods can now be applied to Yw and Xw. Thereby, the estimate σ̂ε has
to be set to the value 1. We note that in the low-dimensional case, the resulting p-values (with
unregularized residuals Zj) are very similar to the p-values provided by the standard R-function
glm.

3.3 Small empirical comparison

We provide a small empirical comparison of the methods mentioned in 3.1 and 3.2. When applying
the linear model procedures, we use the naming from 2.4. The new GLM-specific methods from 3.1
are referred to by their linear model names with a capital G added to them.

For simulating the data, we use a subset of the variations presented in Section 2.4.2. We only
look at Toeplitz and Equi.corr and an active set size of s0 = 3. The number of variables is fixed at
p = 500 but the sample size is varied n ∈ {100, 200, 400}. The coefficients were randomly generated

Randomly generated : U(0,1), U(0,2), U(0,4).

The non-zero coefficient positions are chosen randomly in one case and fixed as the first s0 columns
of X in the other.

For every combination (of type of design, type of coefficients, sample size and coefficient posi-
tions), 100 responses Y are simulated to calculate empirical versions of the “Power” and “FWER”
described in Section 2.4.3. In contrast to the p-value results from Section 2.4.3, there is only one
resulting datapoint per setup combination (i.e., no additional replication with new random co-
variates, random coefficients and random active set). For each method, there are 18 datapoints,
corresponding to 18 settings, in each plot. The results can be found in Figure 7.
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Fig 7. Familywise error rate (FWER) and power for multiple testing based on various methods for logistic regression.
The desired control level for the FWER is α = 0.05. The design matrix is of type Toeplitz in the top plot and
Equi.corr in the bottom plot. If the method name contains a capital G it is the modified glm version, otherwise the
linear model methods are used using the weighted squared error approach.

Both the modified GLM methods as well as the weighted squared error approach works ade-
quately. The Equi.corr setup does prove to be challenging for Lasso-ProG.
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3.4 hdi for generalized linear models

In the hdi R-package (Meier et al., 2014) we also provide the option to use the Ridge projection
method and the de-sparsified Lasso method with the weighted squared error approach.

We provide the option to specify the family of the response Y as done in the R-package glmnet.

> outRidge <- ridge.proj(x = x, y = y, family = "binomial")

> outLasso <- lasso.proj(x = x, y = y, family = "binomial")

P-values and confidence intervals are extracted in the exact same way as for the linear model
case, see Section 2.2.

4. HIERARCHICAL INFERENCE IN PRESENCE OF HIGHLY CORRELATED VARIABLES

The previous sections and methods assume in some form or another that the effects are strong
enough to enable accurate estimation of the contribution of individual variables.

Variables are often highly correlated for high-dimensional data. Working with a small sample
size, it is impossible to attribute any effect to an individual variable if the correlation between a
block of variables is too high. Confidence intervals for individual variables are then very wide and
uninformative. Asking for confidence intervals for individual variables thus leads to poor power of
all procedures considered so far. Perhaps even worse, under high correlation between variables the
coverage of some procedures will also be unreliable as the necessary conditions for correct coverage
(such as the compatibility assumption) are violated.

In such a scenario, the individual effects are not granular enough to be resolved. However, it
might yet still be possible to attribute an effect to a group of variables. The groups can arise
naturally due to a specific structure of the problem, such as in applications of the group Lasso
(Yuan and Lin, 2006).

Perhaps more often, the groups are derived via hierarchical clustering (Hartigan, 1975), using
the correlation structure or some other distance between the variables. The main idea is as follows.
A hierarchy T is a set of clusters or groups {Ck; k} with Ck ⊆ {1, . . . , p}. The root node (cluster)
contains all variables {1, . . . , p}. For any two clusters Ck, C`, either one cluster is a subset of the other
or they have an empty intersection. Usually, a hierarchical clustering has an additional notion of a
level such that on each level, the corresponding clusters build a partition of {1, . . . , p}. We consider
a hierarchy T and first test the root node cluster C0 = {1, . . . , p} with hypothesis H0,C0 : β1 =
β2 = . . . = βp = 0. If this hypothesis is rejected, we test the next clusters Ck in the hierarchy (all
clusters whose supersets are the root node cluster C0 only): the corresponding cluster hypotheses
are H0,Ck : βj = 0 for all j ∈ Ck. For the hypotheses which can be rejected, we consider all smaller
clusters whose only supersets are clusters which have been rejected by the method before, and we
continue to go down the tree hierarchy until no more cluster hypothesis can be rejected.

With the hierarchical scheme in place, we still need a test for the null hypothesis H0,C of a cluster
of variables. The tests have different properties. For example, whether a multiplicity adjustment is
necessary will depend on the chosen test. We will describe below some methods that are useful for
testing the effect of a group of variables and which can be used in such a hierarchical approach.
The nice and interesting feature of the procedures is that they adapt automatically to the level of
the hierarchical tree: if a signal of a small cluster of variables is strong, and if that cluster is suffi-
ciently uncorrelated from all other variables or clusters, the cluster will be detected as significant.
Vice versa, if the signal is weak or if the cluster has too high correlation with other variables or
clusters, the cluster will not become significant. For example, a single variable cannot be detected
as significant if it has too much correlation to other variables or clusters.
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4.1 Group-bound confidence intervals without design assumptions

The Group-bound proposed in (Meinshausen, 2013) gives confidence intervals for the `1-norm
‖β0Ck‖1 of a group Ck ⊆ {1, . . . , p} of variables. If the lower-bound of the 1−α confidence interval is

larger than 0, then the null hypothesis β0Ck ≡ 0 can be rejected for this group. The method combines
a few properties:

(i) The confidence intervals are valid without an assumption like the compatibility condition
(A.1).

(ii) The test is hierarchical. If a set of variables can be rejected, all supersets will also be rejected.
And vice versa: if a group of variables cannot be rejected, none of its subsets can be rejected.

(iii) The estimation accuracy has an optimal detection rate under the so-called group effect com-
patibility condition, which is weaker than the compatibility condition necessary to detect the
effect of individual variables.

(iv) The power of the test is unaffected by adding highly or even perfectly correlated variables
in Ck to the group. The compatibility condition would fail to yield a non-trivial bound but
the group effect compatibility condition is unaffected by the addition of perfectly correlated
variables to a group.

The price to pay for the assumption-free nature of the bound is a weaker power than with previously
discussed approaches when the goal is to detect the effect of individual variables. However, for
groups of highly correlated variables, the approach can be much more powerful than simply testing
all variables in the group.

We remark that previously developed tests can be adapted to the context of hierarchical testing
of groups with hierarchical adjustment for familywise error control (Meinshausen, 2008); for the
Multi sample-splitting method, this is described next.

4.2 Hierarchical multi sample-splitting

The Multi sample-splitting method (Section 2.1.1) can be adapted to the context of hierarchical
testing of groups by using hierarchical adjustment of familywise error control (Meinshausen, 2008).
When testing a cluster hypotheses H0,C , one can use a modified form of the partial F-test for high-
dimensional settings; and the multiple testing adjustment due to the multiple cluster hypotheses
considered can be taken care of a hierarchical adjustment scheme proposed in Meinshausen (2008).
A detailed description of the method, denoted here by Hier. MS-Split, together with theoretical
guarantees is given in Mandozzi and Bühlmann (2013).

4.3 Simultaneous inference with the Ridge or de-sparsified Lasso method

Simultaneous inference for all possible groups can be achieved by considering p-values Pj of
individual hypotheses H0,j : β0j = 0 (j = 1, . . . , p) and adjusting them for simultaneous coverage,
namely Padjusted,j = Pj ·p. The individual p-values Pj can be obtained by the Ridge or de-sparsified
Lasso method in Section 2.

We can then test any group hypothesis H0,G : β0j = 0 for all j ∈ G by simply looking whether
minj∈G Padjust,j ≤ α, and we can consider as many group hypotheses as we want without any further
multiple testing adjustment.

4.4 Illustrations

A semi-real data example is shown in Figure 8, where the predictor variables are taken from the
Riboflavin dataset (Bühlmann et al., 2014a) (n = 71, p = 4088) and the coefficient vector is taken
to have entries 0, except for 2 clusters of highly correlated variables. In example 1, the clusters
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both have size 3 with nonzero coefficient sizes equal to 1 for all the variables in the clusters and
Gaussian noise level σ = 0.1. In example 2, the clusters are bigger and have different sizes 11 and
21, the coefficient sizes for all the variables in the clusters is again 1 but the Gaussian noise level
here is chosen to be σ = 0.5.

In the first example, 6 out of the 6 relevant variables are discovered as individually significant by
the Lasso-Pro, Ridge and MS-Split methods (as outlined in Sections 2.1.1–2.1.2), after adjusting
for multiplicity.

In the second example, the methods cannot reject the single variables individually any longer.
The results for the Group-bound estimator are shown in the right column. The Group-bound can
reject a group of 4 and 31 variables in the first example, each contains a true cluster of 3 variables.
The method can also detect a group of 2 variables (a subset of the cluster of 4) which contains 2
out of the 3 highly correlated variables. In the second example, a group of 34 variables is rejected
with the Group-bound estimator, containing 16 of the group of 21 important variables. The smallest
group of variables containing the cluster of 21 that the method can detect, is of size 360. It can
thus be detected that the variables jointly have a substantial effect even though the null hypothesis
cannot be rejected for any variable individually. The Hierarchical multi sample-splitting method
(outlined in Section 4.2) manages to detect the same clusters as the Group-bound method. It even
goes one step further by detecting a smaller subcluster.

We also consider the following simulation model. The design matrix was chosen to be Gaussian
with mean zero and population block-diagonal covariance matrix Σ with blocks of dimension 20×20
with equi-correlated off-diagonal entries ρ. We chose the dimension p = 500, sample size n = 100
and Gaussian noise with level σ = 1. There were only 3 nonzero coefficients chosen with three
different signal levels (realizations of the β’s) from Uniform distributions U[0,2], U[0,4] and U[0,8].
Aside from varying signal level, we studied two cases where either all the nonzero coefficients were
contained in one single highly correlated block or each of the active variables were in a different
block. Figures 9 and 10 show the coverage and power as a function of the correlation ρ between
variables in another simulation model. The type of design matrix was chosen to be such that the
population covariance matrix Σ is a block-diagonal matrix with blocks of dimension 20× 20 being
of the same type as Σ for Equi.corr (see Section 2.4.2) with off-diagonal ρ instead of 0.8. The
dimensions of the problem were chosen to be p = 500 number of variables, n = 100 number of
samples and noise level σ = 1. There were only 3 nonzero coefficients chosen with three different
signal levels U[0,2], U[0,4] and U[0,8] being used for the simulations. Aside from varying signal level,
we studied the two cases where in one case all the nonzero coefficients were contained in one single
highly correlated block and in the other case each of those variables was in a different block. We
look at 3 different measures of power. One can define the power as the fraction of the 100 repeated
simulations that the method managed to reject the group of all variables G = 1, . . . , p. This is
shown at the top in figure 9. Alternatively, one can look at the rejection rate of the hypothesis
for the group G that contains all variables in the highly correlated blocks that contain a variable
from S0. This is the plot at the bottom in figure 9. Finally, one can look at the rejection rate of
the hypothesis where the group G contains only the variables in S0 (of size 3 in this case). The
type I error we define to be the fraction of the simulations in which the method rejected the group
hypothesis H0,Sc

0
where all regression coefficients are equal to zero. These last two are presented in

Figure 10.
The power of the Ridge-based method (Bühlmann, 2013) drops substantially for high correlations.

The power of the Group-bound stays close to 1 at the level of the highly correlated groups (Block-
power) and above (Power G = 1 . . . p) throughout the entire range of correlation values. The Lasso-
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Fig 8. A visualization of the hierarchical testing scheme. Rejected clusters are shown with a red circle, and the size of
the cluster is on the vertical axis. The top row is the first example mentioned in the text, the bottom row corresponds
to the second example with a lower signal-to-noise ratio and less sparsity. In the left column, the outcomes when using
the de-sparsified Lasso-pro and Ridge-based methods are shown, which find the individually important variables in the
first example and nothing in the second example.The right column shows the outcome when using the Group-bound
method, which find two significant clusters in the first example (containing the true set of important variables) and
a single significant cluster in the second example (again containing a set of important variables). The middle column
shows the outcome for the Hierarchical Multi sample-splitting method which performs similar to Ridge and Lasso-Pro
in example 1 and similar to Group-bound in example 2.

Pro and MS-Split perform well here as well. The power of the Group-bound is 0 when attempting to
reject the small groups H0,S0 . The type I error rate is supposedly controlled at level α = 0.05 with
all three methods. However, the Lasso-Pro and the hierarchical MS-Split methods fail to control
the error rates, with the type I error rate even approaching 1 for large values of the correlation.
The Group-bound and Ridge-based estimator have, in contrast, a type I error rate close to 0 for all
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Fig 9. The power for the rejection of the group-hypothesis of all variables (top) and the power for the rejection of the
group-hypothesis of the variables in blocks highly correlated with S0 variables (bottom). The design matrix used is of
type Block Equi.corr which is similar to the Equi.corr setup in that Σ is block diagonal with blocks (of size 20× 20)
being the Σ of Equi.corr. The power is plotted as a function of the correlations in the blocks, quantified by ρ. The
Ridge-based method loses power as the correlation between variables increases, while the group bound, Hier. MS-Split
and Lasso-Pro methods can maintain power close to 1 for both measures of power.

values of the correlation.
For highly correlated groups of variables, trying to detect the effect of individual variables has

thus two inherent dangers. The power to detect interesting groups of variables might be very low.
And the assumptions for the methods might be violated, which invalidates the type I error control.
The assumption-free Group-bound method provides a powerful test for the group effects even if
variables are perfectly correlated but suffers in power, relatively speaking, when variables are not
highly correlated.

4.5 hdi for hierarchical inference

An implementation of the Group-bound method is provided in the hdi R-package (Meier et al.,
2014).

For specific groups, one can provide a vector or a list of vectors where the elements of the vector
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Fig 10. The power for the rejection of the group-hypothesis of all S0 variables (top) and type I error rate corresponding
to the rejection of the group-hypothesis of all Sc

0 variables (bottom) for the design matrix of type Block Equi.corr
when changing the correlation ρ between variables. The design matrix type is described in detail in the caption of Figure
9 and in the text. The de-sparsified Lasso, Hier. MS-Split and the Ridge-based method lose power as the correlation
between variables increases, while the Group-bound cannot reject the small group of variables S0 (3 in this case).
The de-sparsified Lasso and MS-Split methods also exceed the nominal type I error rate for high correlations (as the
design assumptions break down), whereas the Ridge-based method and the Group-bound are both within the nominal
5% error rate for every correlation strength.

specify the desired columns of X to be tested for. The following code tests the group hypothesis if
the group contains all variables

> group <- 1:ncol(x)

> outGroupBound <- groupBound(x = x, y = y, group = group, alpha = 0.05)

> rejection <- outGroupBound > 0

Note that one needs to specify the significance level α.
One can also let the method itself apply the hierarchical clustering scheme as described at the

beginning of Section 4. This works as follows:

> outClusterGroupBound <- clusterGroupBound(x = x, y = y, alpha = 0.05)
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The output contains all clusters that were tested for significance in members. The corresponding
lower bounds are contained in lowerBound.

To extract the significant clusters, one can do

> significant.cluster.numbers <- which(outClusterGroupBound$lowerBound > 0)

> significant.clusters <- outClusterGroupBound$members[[significant.cluster.numbers]]

The figures in the style of figure 8 can be achieved by using the function plot on outClusterGroupBound.
Note that one can specify the distance matrix used for the hierarchical clustering, as done for

hclust.
To test group hypotheses H0,G for the Ridge and de-sparsified Lasso method as described in

Section 4.3, one uses the output from the original single parameter fit, as illustrated for the group
of all variables:

> outRidge <- ridge.proj(x = x, y = y)

> outLasso <- lasso.proj(x = x, y = y)

> group <- 1:ncol(x)

> outRidge$groupTest(group)

> outLasso$groupTest(group)

To apply an hierarchical clustering scheme as done in clusterGroupBound, one calls clusterGroupTest

> outRidge$clusterGroupTest(alpha = 0.95)

To summarize, the R-package provides functions to test individual groups as well as to test
according to a hierarchical clustering scheme for the methods Group-bound, Ridge and de-sparsified
Lasso. An implementation of the hierarchical Multi sample-splitting method is not provided at this
point in time.

5. STABILITY SELECTION AND ILLUSTRATION WITH HDI

Stability selection (Meinshausen and Bühlmann, 2010) is another methodology to guard against
false positive selections, by controlling the expected number of false positives E[V ]. The focus is on
selection of a single or a group of variables in a regression model, or on a selection of more general
discrete structures such as graphs or clusters. For example, for a linear model in (2.1) and with
selection of single variables, stability selection provides a subset of variables Ŝstable such that for
V = |Ŝstable ∩ Sc0| we have that E[V ] ≤M , where M is a pre-specified number.

For selection of single variables in a regression model, the method does not need a beta-min as-
sumption but the theoretical analysis of stability selection for controlling E[V ] relies on a restrictive
exchangeability condition (which e.g. is ensured by a restrictive condition on the design matrix).
This exchangeability condition seems far from necessary though (Meinshausen and Bühlmann,
2010). A refinement of stability selection is given in Shah and Samworth (2013).

An implementation of the stability selection procedure is available in the hdi R-package. It is
called in a very similar way as the other methods. If we want to control e.g. E[V ] ≤ 1 we use

> outStability <- stability(x = x, y = y, EV = 1)

The “stable” predictors are available in the element select. The default model selection algorithm
is the Lasso (the first q variables entering the lasso paths). The option model.selector allows to
apply a user defined model selection function.
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6. R WORKFLOW EXAMPLE

We go through a possible R workflow based on the Riboflavin dataset (Bühlmann et al., 2014a)
and methods provided in the hdi R-package.

> library(hdi)

> data(riboflavin)

We assume a linear model and we would like to investigate which effects are statistically sig-
nificant on a significance level of α = 0.05. Moreover, we want to construct the corresponding
confidence intervals.

We start by looking at the individual variables. We want a conservative approach and, based on
the results from Section 2.4, we choose the Ridge projection method for its good error control.

> outRidge <- ridge.proj(x = riboflavin$x, y = riboflavin$y)

We investigate if any of the multiple testing corrected p-values is smaller than our chosen signif-
icance level.

> any(outRidge$pval.corr <= 0.05)

[1] FALSE

We calculate the 95% confidence intervals for the first 3 predictors

> confint(outRidge,parm=1:3,level=0.95)

lower upper

AADK_at -0.8848403 1.541988

AAPA_at -1.4107374 1.228205

ABFA_at -1.3942909 1.408472

Disappointed with the lack of significance for testing individual variables, we want to investigate
if we can find a significant group instead. From the procedure proposed for the Ridge method in
Section 4, we know that if the Ridge method can’t find any significant individual variables, it won’t
find a significant group either.

We apply the Group-bound method with its clustering option to try to find a significant group.

> outClusterGroupBound <- clusterGroupBound(x = riboflavin$x,

y = riboflavin$y,

alpha = 0.05)

> significant.cluster.numbers <- which(outClusterGroupBound$lowerBound > 0)

> significant.clusters <- outClusterGroupBound$members[[significant.cluster.numbers]]

> str(significant.clusters)

num [1:4088] 1 2 3 4 5 6 7 8 9 10 ...

Only a single group, being the root node of the clustering tree, is found significant.
These results are in line with the results achievable in earlier studies of the same dataset in

Bühlmann et al. (2014a) and van de Geer et al. (2014).
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7. CONCLUSIONS

We present a (selective) overview of recent developments in frequentist high-dimensional infer-
ence for constructing confidence intervals and assigning p-values for the parameters in linear and
generalized linear models. We include some methods which are able to detect significant groups of
highly correlated variables which cannot be individually detected as single variables. We comple-
ment the methodology and theory viewpoints with a broad empirical study. The latter indicates
that more “stable” procedures based on Ridge estimation or sample splitting with subsequent aggre-
gation might be more reliable for type I error control, at the price of losing power; asymptotically,
power-optimal methods perform nicely in well-posed scenarios but are more exposed to fail for
error control in more difficult settings where the design or degree of sparsity are more ill-posed.
We introduce the R-package hdi which allows the user to choose from a collection of frequentist
inference methods and eases reproducible research.

APPENDIX A: APPENDIX

A.1 Additional definitions and descriptions

Compatibility condition (Bühlmann and van de Geer, 2011, p.106). Consider a fixed design matrix
X. We define the following.

The compatibility condition holds if for some φ0 > 0 and all β satisfying ‖βSc
0
‖1 ≤ 3‖βS0‖1:

‖βS0‖21 ≤ βT Σ̂βs0/φ
2
0, Σ̂ = n−1XTX.(A.1)

Here βA denotes the components {βj ; j ∈ A} where A ⊆ {1, . . . , p}. The number φ0 is called the
compatibility constant.

Aggregation of dependent p-values Aggregation of dependent p-values can be generically done as
follows.

Lemma 1. (Implicitly contained in Meinshausen et al. (2009)).
Assume that we have B p-values P (1), . . . , P (B) for testing a null-hypothesis H0, i.e., for every
b ∈ {1, . . . , B} and any 0 < α < 1, PH0 [P (b) ≤ α] ≤ α. Consider for any 0 < γ < 1 the empirical
γ-quantile

Q(γ) = min
(

empirical γ-quantile {P (1)/γ, . . . , P (B)/γ}, 1
)
,

and the minimum value of Q(γ), suitably corrected with a factor, over the range (γmin, 1) for some
positive (small) 0 < γmin < 1:

P = min

(
(1− log(γmin)) min

γ∈(γmin,1)
Q(γ), 1

)
.

Then, both Q(γ) (for any fixed γ ∈ (0, 1)) and P are conservative p-values satisfying for any
0 < α < 1: PH0 [Q(γ) ≤ α] ≤ α or PH0 [P ≤ α] ≤ α, respectively.

Bounding the error of the estimated bias correction in the de-sparsified Lasso. We will argue now
why the error from the bias correction∑

k 6=j

√
nPjk(β̂k − β0k)
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is negligible. From the KKT conditions when using the Lasso of X(j) versus X(−j) we have
(Bühlmann and van de Geer, 2011, cf. Lem 2.1):

max
k 6=j

2|n−1(X(k))TZ(j)| ≤ λj .(A.2)

Therefore,

|
√
n
∑
k 6=j

Pjk(β̂k − β0k)| ≤
√
nmax
k 6=j
|Pjk|‖β̂ − β0‖1

≤ 2
√
nλj‖β̂ − β0‖1(n−1(X(j))TZ(j))−1.

Assuming sparsity and the compatibility condition (A.1), and when choosing λj �
√

log(p)/n, one

can show that (n−1(X(j))TZ(j))−1 = OP (1) and ‖β̂ − β0‖1 = OP (s0
√

log(p)/n) (for the latter, see
(2.2)). Therefore,

|
√
n
∑
k 6=j

Pjk(β̂k − β0k)| ≤ OP (
√
ns0
√

log(p)/nλj) = OP (s0 log(p)n−1/2),

where the last bound follows by assuming λj �
√

log(p)/n. Thus, if s0 � n1/2/ log(p), the error
from bias correction is asymptotically negligible.

Choice of λj for de-sparsified Lasso. We see from (A.2), that the numerator of the error in the
bias correction term (i.e. the Pjk’s) is decreasing as λj ↘ 0; for controlling the denominator, λj
shouldn’t be too small to ensure that the denominator (i.e. n−1(X(j))TZ(j)) behaves reasonable
(staying away from zero) for a fairly large range of λj .

Therefore, the strategy is as follows.

1. Compute a Lasso regression of X(j) versus all other variables X(−j) using CV, and the corre-
sponding residual vector is denoted by Z(j).

2. Compute ‖Z(j)‖22/((X(j))TZ(j))2 which is the asymptotic variance of b̂j/σε, assuming that
the error in the bias correction is negligible.

3. Increase the variance by 25%, i.e., Vj = 1.25‖Z(j)‖22/((X(j))TZ(j))2.
4. Search for the smallest λj such that the corresponding residual vector Z(j)(λj) satisfies:

‖Z(j)(λj)‖22/((X(j))TZ(j)(λj))
2 ≤ Vj .

This procedure is similar to the choice of λj advocated in Zhang and Zhang (2014).

Bounding the error of bias correction for the Ridge projection. The goal is to derive the formula
(2.11). Based on (2.9) we have:

σ−1ε Ω
−1/2
R;jj (b̂R;j − β0j ) ≈ Ω

−1/2
R;jj Wj + σ−1ε Ω

−1/2
R;jj ∆R;j , W ∼ Np(0,ΩR),

|∆R;j | ≤ max
k 6=j

∣∣∣∣PR;jk

PR;jj

∣∣∣∣ ‖β̂ − β0‖1.
In relation to the result in Fact 2 for the de-sparsified Lasso, the problem here is that the behavior

of maxk 6=j |P−1R;jjPR:jk| and of the diagonal elements ΩR;jj are hard to control but fortunately, these
quantities are fixed and observed for fixed design X.
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By invoking the compatibility constant for the design X, we obtain the bound for ‖β̂ − β0‖1 ≤
s04λ/φ0 in (2.2) and therefore, we can upper-bound

|∆R;j | ≤ 4s0λ/φ
2
0 max
k 6=j

∣∣∣∣PR;jk

PR;jj

∣∣∣∣ .
Asymptotically, for Gaussian errors, we have with high probability

|∆R;j | = O(s0
√

log(p)/nmax
k 6=j

∣∣∣∣PR;jk

PR;jj

∣∣∣∣)
≤ O((log(p)/n)1/2−ξ max

k 6=j

∣∣∣∣PR;jk

PR;jj

∣∣∣∣),(A.3)

where the last inequality holds due to assuming s0 = O((n/ log(p))ξ) for some 0 < ξ < 1/2. In
practice, we use the bound from (A.3) in the form:

∆Rbound;j := max
k 6=j

∣∣∣∣PR;jk

PR;jj

∣∣∣∣ (log(p)/n)1/2−ξ,

with the typical choice ξ = 0.05.

A.2 Confidence intervals for Multi sample-splitting

We construct confidence intervals that satisfy the duality with the p-values from equation (2.5),
and thus, they are corrected already for multiplicity:

(1− α)% CI = Those values c for which the p-value ≥ α for testing the null hypothesis H0,j : β = c

= Those c for which the p-value resulting from the p-value aggregation procedure is ≥ α,
= {c|Pj ≥ α},
= {c|(1− log γmin) inf

γ∈(γmin,1)
Qj(γ) ≥ α},

= {c|∀γ ∈ (γmin, 1) : (1− log γmin)Qj(γ) ≥ α},

= {c|∀γ ∈ (γmin, 1) : min(1, emp. γ quantile(P
[b]
corr;j)/γ) ≥ α/(1− log γmin)},

= {c|∀γ ∈ (γmin, 1) : emp. γ quantile(P
[b]
corr;j)/γ ≥ α/(1− log γmin)},

= {c|∀γ ∈ (γmin, 1) : emp. γ quantile(P
[b]
corr;j) ≥

αγ

(1− log γmin)
}.

We will use the notation γ[b] for the position of P
[b]
corr;j in the ordering by increasing value of the

corrected p-values P
[i]
corr;j , divided by B.

We can now rewrite our former expression in a form explicitly using our information from every
sample split

(1− α)% CI

= {c|∀b = 1, . . . , B : (γ[b] ≤ γmin) ∨ (P
[b]
corr;j ≥

αγ[b]

(1− log γmin)
)}

= {c|∀b = 1, . . . , B : (γ[b] ≤ γmin) ∨ (c ∈ the

(
1− αγ[b]

(1− log γmin)|Ŝ[b]|

)
100%CI for split b)}.
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For single testing (not adjusted for multiplicity), the corresponding confidence interval becomes:

(1− α)% CI

= {c|∀b = 1, . . . , B : (γ[b] ≤ γmin) ∨ (c ∈ the

(
1− αγ[b]

(1− log γmin)

)
100%CI for split b)}.

If one has starting points with one being in the confidence interval and the other one outside of
it, one can apply the bisection method to find the bound in between these points.

A.3 Broad comparison results with fixed active set positions

In Figures 11, 12 and 13 the simulation results can be found where the positions of the non-zero
coefficients were fixed to the first s0 positions.

Note that in comparison to the case with random active set positions, the type I error is better
controlled for the Toeplitz design whereas it is poor for all methods for the Exp.decay setup.
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Fig 11. Familywise error rate (FWER) and power for multiple testing based on various methods for a linear model.
The desired control level for the FWER is α = 0.05. The average number of false positives AVG(V) for each method
is shown in the middle. The design matrix is of type Toeplitz, and the active set with fixed position of active variables
has sizes s0 = 3 (top) and s0 = 15 (bottom).

A.4 More empirical confidence interval results

We present the confidence interval results corresponding to the setup combinations from the p-
value results presented in Section 2.4.2. Some results are also for non-ordered non-zero coefficients
with which is meant that their positions as columns of x were chosen randomly.

Generally speaking we can say that the overall coverage of the zero-coefficients is good. (The
number to the right of the plot is always bigger than or equal to 95). Depending on the ordering
of the variables and the correlation structure of the design, coverage can be poor for the non-zero
coefficients or a few zero coefficients.
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Fig 12. See caption of Figure 11 with the only difference being the type of design matrix. In this plot the design matrix
type is Exp.decay.
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Fig 13. See caption of Figure 11 with the only difference being the type of design matrix. In this plot, the design
matrix type is Equi.corr.
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Fig 14. See caption of Figure 6 with the only difference being the type of design matrix. In this plot, the design matrix
type is Exp.decay
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Fig 15. See caption of Figure 6 with the only difference being the type of design matrix. In this plot, the design matrix
type is Equi.corr
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Fig 16. See caption of Figure 6 with the only difference being the positions of the non-zero coefficients being non-
ordered (as in not the first s0 columns of X).
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Fig 17. See caption of Figure 6 with the only differences being the positions of the non-zero coefficients being non-
ordered (as in not the first s0 columns of X) and the design matrix type to be Exp.decay.
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Fig 18. See caption of Figure 6 with the only differences being the positions of the non-zero coefficients being non-
ordered (as in not the first s0 columns of X) and the design matrix type to be Equi.corr.
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Fig 19. See caption of Figure 6 with the only difference being the size of the non-zero coefficients being U [0, 4].
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Fig 20. See caption of Figure 6 with the only differences being the size of the non-zero coefficients being U [0, 4] and
the design matrix type being Exp.decay.
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Fig 21. See caption of Figure 6 with the only differences being the size of the non-zero coefficients being U [0, 4] and
the design matrix type being Equi.corr.
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Fig 22. See caption of Figure 6 with the only differences being the size of the non-zero coefficients being U [0, 4] and
the positions of the non-zero coefficients being non-ordered (as in not the first s0 columns of X).
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Fig 23. See caption of Figure 6 with the differences being the type of design matrix being Exp.decay, the size of the
non-zero coefficients being U [0, 4] and the positions of the non-zero coefficients being non-ordered (as in not the first
s0 columns of X).
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Fig 24. See caption of Figure 6 with the differences being the type of design matrix being Equi.corr, the size of the
non-zero coefficients being U [0, 4] and the positions of the non-zero coefficients being non-ordered (as in not the first
s0 columns of X).
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Fig 25. See caption of Figure 6 with the only difference being the size of the non-zero coefficients being U [−2, 2].
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Fig 26. See caption of Figure 6 with the only differences being the size of the non-zero coefficients being U [−2, 2] and
the design matrix type being Exp.decay.
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Fig 27. See caption of Figure 6 with the only differences being the size of the non-zero coefficients being U [−2, 2] and
the design matrix type being Equi.corr.

38



Jm2013

64
80

50
42 58 59 62 64 66 67 68 68 68 72 73 73 74 75

94

liuyu

91
26

90
91 92 93 97 97 97 97 97 98 98 98 98 98 98 98

99

Res−Boot

92
33

94
90 94 94 94 95 95 96 96 96 96 96 96 97 97 97

99

MS−Split

100
100

100

85 87 92
95 96 97 99 99

100 100 100 100 100 100 100

98

Ridge

100
100

98
85 93 95 96 98 98 98 98 98 99 99 99 99 99 99

99

Lasso−Pro Z&Z

96
99

90
72 75 76 77 79 80 81 81 82 82 82 82 83 84 84

95

Lasso−Pro

89
98

79
50 66 69 69 71 72 73 76 76 76 77 79 79 79 79

95

S0
c

Toeplitz  s0=3   U[−2,2] non−ordered non−zero positions 

Fig 28. See caption of Figure 6 with the only differences being the size of the non-zero coefficients being U [−2, 2] and
the positions of the non-zero coefficients being non-ordered (as in not the first s0 columns of X).
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Fig 29. See caption of Figure 6 with the differences being the type of design matrix being Exp.decay, the size of the
non-zero coefficients being U [−2, 2] and the positions of the non-zero coefficients being non-ordered (as in not the first
s0 columns of X).
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Fig 30. See caption of Figure 6 with the differences being the type of design matrix being Equi.corr, the size of the
non-zero coefficients being U [−2, 2] and the positions of the non-zero coefficients being non-ordered (as in not the first
s0 columns of X).

A.5 Weighted squared error approach for general GLM

We describe the approach presented in Section 3.2 in a more general way. One algorithm for
fitting generalized linear models is to calculate the maximum likelihood estimates β̂ by applying
iterative weighted least squares (McCullagh and Nelder, 1989).

As in Section 3.2, the idea is now to apply standard l1-penalized fitting of the model, then build
up the weighted least squares problem at the l1-solution and apply our linear model methods on
this problem.

From McCullagh and Nelder (1989), using the notation ẑi = g−1((Xβ̂)i), i = 1, . . . , n, the
adjusted response variable becomes

Yi,adj = (Xβ̂)i + (Yi − ẑi)
∂g(z)

∂z

∣∣∣∣
z=ẑi

, i = 1, . . . , n.

We then get a weighted least squares problem

β̂new = argminβ(Yadj −Xβ)TW (Yadj −Xβ),
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with weights

W−1 =



(∂g(z)∂z )2
∣∣∣∣
z=ẑ1

V (ẑ1) 0 . . . 0

0 (∂g(z)∂z )2
∣∣∣∣
z=ẑ2

V (ẑ2)
. . .

...

...
. . .

. . . 0

0 . . . 0 (∂g(z)∂z )2
∣∣∣∣
z=ẑn

V (ẑn)


,

with variance function V (z).
The variance function V (z) is related to the variance of the response Y . To more clearly define

this relation, we assume that the response Y has a distribution of the form described in McCullagh
and Nelder (1989)

fY (y; θ, φ) = exp [(yθ − b(θ))/a(φ) + c(y, φ)],

with known functions a(·), b(·) and c(·). θ is the canonical parameter and φ is the dispersion
parameter.

As defined in McCullagh and Nelder (1989), the variance function is then related to the variance
of the response in the following way

Var(Y ) = b
′′
(θ)a(φ) = V (g−1(Xβ0))a(φ).

We rewrite, Yw =
√
WYadj and Xw =

√
WX to get

β̂new = argminβ(Yw −Xwβ)T (Yw −Xwβ).

The linear model methods can now be applied to Yw and Xw. Thereby, the estimate σ̂ε has to
be set to the value 1.
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