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NODE HARVEST

BY NICOLAI MEINSHAUSEN

University of Oxford

When choosing a suitable technique for regression and classification with
multivariate predictor variables, one is often faced with a tradeoff between in-
terpretability and high predictive accuracy. To give a classical example, clas-
sification and regression trees are easy to understand and interpret. Tree en-
sembles like Random Forests provide usually more accurate predictions. Yet
tree ensembles are also more difficult to analyze than single trees and are
often criticized, perhaps unfairly, as ‘black box’ predictors.

Node harvest is trying to reconcile the two aims of interpretability and pre-
dictive accuracy by combining positive aspects of trees and tree ensembles.
Results are very sparse and interpretable and predictive accuracy is extremely
competitive, especially for low signal-to-noise data. The procedure is simple:
an initial set of a few thousand nodes is generated randomly. If a new ob-
servation falls into just a single node, its prediction is the mean response of
all training observation within this node, identical to a tree-like prediction.
A new observation falls typically into several nodes and its prediction is then
the weighted average of the mean responses across all these nodes. The only
role of node harvest is to ‘pick’ the right nodes from the initial large ensemble
of nodes by choosing node weights, which amounts in the proposed algorithm
to a quadratic programming problem with linear inequality constraints. The
solution is sparse in the sense that only very few nodes are selected with a
nonzero weight. This sparsity is not explicitly enforced. Maybe surprisingly,
it is not necessary to select a tuning parameter for optimal predictive accu-
racy. Node harvest can handle mixed data and missing values and is shown to
be simple to interpret and competitive in predictive accuracy on a variety of
data sets.

1. Introduction. Let Y = (Y1, . . . ,Yn) be a vector of n observations of a
univariate real-valued response and X be the n × p-dimensional matrix, where
the row-vector Xi· ∈ X is the p-dimensional covariate for the ith observation for
i = 1, . . . , n. When trying to predict a new response, given covariates, regression
trees [Breiman et al. (1984)] are attractive since they are very simple to build and
understand. They are one example of a wider range of recursive partitioning meth-
ods. For the sake of notational simplicity, let the notion of a node in a tree and the
corresponding subspace of X be identical. Let Q be a collection of q nodes, where
a node Qg ∈ Q, g = 1, . . . , q , is defined by a rectangular subspace of X ,

Qg = {
x ∈ X : xk ∈ I

(g)
k for k = 1, . . . , p

}
,
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and each interval I
(g)
k is a subset of the support of the kth covariate.

The leaf nodes of a tree form a partition of X in that their union is identical to X
and all pairwise intersections are empty. If each leaf node is an element of Q, the
partition corresponding to a tree can be expressed by a weight vector w ∈ {0,1}q ,
where wg = 0 means that node g is not used in the partition, while wg = 1 means
that node g is used in the partition. The tree-style prediction Ŷ (x) at a point x ∈ X
is then the observed mean over all training observations in the same node,

Ŷ (x) =
q∑

g=1

µg1{x ∈ Qg}wg,(1)

where µg is the mean over all observations falling into node Qg ,

µg =
∑n

i=1 1{Xi·∈Qg }Yi
∑n

i=1 1{Xi·∈Qg }
.

The predictions on the n observed samples can be conveniently written as Mw,
where M is the n × q-dimensional matrix, with row entries for i = 1, . . . , n given
by

Mig =
{

µg, if Xi· ∈ Qg

0, if Xi· /∈ Qg
for g = 1, . . . , q = |Q|.(2)

The empirical squared error loss on the training samples is then

‖Y − Mw‖2(3)

and trees try to pick a partitioning by a tree (and a weight vector w equivalently)
that minimizes this empirical loss (3), under certain complexity constraints on the
tree. These complexity constraints can, for example, entail a penalty on tree size or
a lower bound on the number of observations in each node [Breiman et al. (1984)];
for an alternative approach see Blanchard et al. (2007). The optimal values of the
complexity constraints are typically determined by cross-validation.

Compared to single regression trees, predictive accuracy is often improved by
tree ensembles. Boosting [Freund and Schapire (1996); Friedman, Hastie and Tib-
shirani (2000)], bagging [Breiman (1996a)] and Random Forests [Breiman (2001)]
are popular techniques to create these ensembles. Predictions are weighted aver-
ages over the output of all trees in the ensemble. They thus effectively allow an ob-
servation to be part of more than one node. For Random Forests [Breiman (2001)],
each of m trees in the ensemble receives equal weight 1/m. If all leaf nodes of the
Random Forest are part of the set Q above, the empirical loss can again be written
as in (3) with the only difference that now wg ∈ {0,1/m,2/m, . . . ,1} instead of
the binary weights wg = {0,1} for trees. If a node appears only once in the ensem-
ble, its weight is 1/m. If it appears more than once, the associated weight is the
corresponding multiple of 1/m, up to a maximum of 1 if the node appears in every
tree of the ensemble.
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Here, we explore the possibility of allowing arbitrary weights wg ∈ [0,1].
Rather than growing trees greedily, we start from a large set Q of potential nodes
that are either obtained by random splits or picked from an initial tree ensemble,
just as in ‘Rule ensembles’ [Friedman and Popescu (2008)]. While ‘Rule ensem-
bles’ uses the nodes as binary indicator variable in a linear model with an !1-
penalty on coefficients, node harvest retains tree-like predictions of the form (1).
The only task of node harvest is finding suitable weights on nodes. Minimizing
the empirical loss (3) under suitable constraints on the weights turns out to be
a quadratic program with linear inequality constraints, which can be solved effi-
ciently.

The goal of the proposed node harvest procedure is two-fold: On the one hand,
a very competitive predictive accuracy (with practically no adjustment of tuning
parameters). On the other hand, simple, interpretable results and predictions.

Random Forests satisfy the first of these demands but not necessarily the latter
since hundreds of large trees with thousands of nodes are involved in the final de-
cision. Marginal importance measures can be calculated as proposed in [Breiman
(2001)], but they only describe some limited characteristics of the fitted function
and certainly do not explain the whole fit. Trees, on the other hand, satisfy the sec-
ond constraint but fall short of optimal predictive accuracy. Moreover, if tree size
is chosen by cross-validation, the interaction order (tree depth) can be very high,
lowering interpretability. Node harvest has the advantage of delivering very accu-
rate results while using in general only main effects and two-factor interactions.

Node harvest is introduced in Section 2. An extension to binary classification,
dealing with missing values and additional regularization of the estimator are cov-
ered in Section 3, while numerical results are shown in Section 4.

2. Node harvest. Node harvest (NH) is introduced, along with an efficient al-
gorithm to solve the involved quadratic programming problem. Some basic prop-
erties of the estimator are established.

2.1. Optimal partitioning. The starting point of NH is loss function (3). Sup-
pose one would like to obtain a partitioning of the space that minimizes the em-
pirical loss (3). One could collect a very large number of nodes into the set Q that
satisfy desired complexity criteria. Typical complexity criteria are a minimal node
size or maximal interaction depth (tree depth). An empirically optimal partitioning
would search for a weight vector such that the empirical loss is minimal,

ŵ = argmin
w

‖Y − Mw‖2

(4)
such that w ∈ {0,1}q and {Qg : wg = 1} is a partition of X .

The selected set {Qg : wg = 1} ⊂ Q of nodes is understood to form a partition iff
the intersection between all selected nodes is empty and their union is the entire
space X . Even if given a collection Q of nodes, the optimization problem above
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is very difficult to solve. The constraint w ∈ {0,1}q does not correspond to a con-
vex feasible region. Moreover, the constraint that the selected set of nodes form a
partition of the space is also awkward to handle computationally.

The latter problem can be circumvented by demanding instead that the partition
is a proper partitioning for the empirically observed data only in the sense that
each data point is supposed to be part of exactly one node. This loosening of the
constraint will be very helpful at a later stage. It might create the situation that
a new observation will not belong to any node, but this will turn out to be not a
problem in the NH approach since every observation will be a member of the root
node and the root node always receives a small positive weight, which is discussed
further below.

To form such an empirical partitioning, let I be the n × q matrix indicating
whether or not an observation falls into a given leaf. For all rows i = 1, . . . , n,

Iig =
{

1, if Xi· ∈ Qg

0, if Xi· /∈ Qg
for g = 1, . . . , q.(5)

The constraint that each data point be part of one and exactly one node is equiva-
lent to demanding that Iw = 1, understood componentwise. Since w ∈ {0,1}q , this
simple linear equality constraint ensures that each observation is part of exactly
one selected node.

Given a collection Q of nodes, a weight vector w could thus be found by the
constrained optimization

ŵ = argmin
w

‖Y − Mw‖2 such that Iw = 1 and w ∈ {0,1}q .(6)

For the n observed data points, this problem is equivalent to (4), yet it is still NP-
hard to solve in general due to the nonconvex feasible region of the constraint
w ∈ {0,1}q . Tree ensembles relax this constraint and average over several trees,
implicitly allowing weights to take on values in the interval [0,1]. It thus seems
natural to relax the nonconvex constraint w ∈ {0,1}q and only ask for nonnegativ-
ity of the weights.

2.2. Node harvest. The main idea of NH is that it becomes computationally
feasible to solve the optimal empirical partitioning problem (6) if the weights are
only constrained to be nonnegative. The weights across all nodes for a single ob-
servation still have to sum to 1 (as they do for all weighted tree ensembles), but this
constraint is equivalent to Iw = 1, and we can relax (6) to the convex optimization
problem

ŵ = argmin
w

‖Y − Mw‖2 such that Iw = 1 and w ≥ 0.(7)

This estimator is called the node harvest (NH) estimator since a small subset of
nodes is ‘picked’ or selected from a large initial ensemble of nodes. It will turn out
that the vast majority of nodes in this large ensemble will receive a zero weight,
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without the sparsity being enforced explicitly other than through the constraint
Iw = 1. Nodes g which receive a zero weight (ŵg = 0) can be ignored for further
analysis.

The constraints in (7) are satisfied, for example, by setting the weight of the root
node, which is always included in Q and contains all observations, equal to 1 and
all other weights to 0. The set of solutions is thus always nonempty. The solution
to (7) is also either unique or the set of solutions is a convex set. In the latter case,
we define ŵ for definiteness to be the solution that has minimal !2-norm among all
solutions in this convex set, which amounts to adding a small ridge penalty ν‖w‖2

2
to the objective function in (7) and letting ν → 0. Other solutions are possible, but
adding a very small ridge penalty guarantees, moreover, positive definiteness of
the quadratic form and facilitates computation of (7) even if the solution is unique.

The prediction for new data is then simply a weighted average over node means.
For the training data, this is still the vector Mw. The prediction Ŷ (x) for a new data
point x ∈ X is the weighted average over all nodes that x falls into,

Ŷ (x) =
∑

g∈Gx ŵgµg
∑

g∈Gx ŵg
,(8)

where Gx := {g : x ∈ Qg} is the collection of nodes that observation x falls into.
The denominator in (8) is constrained to be 1 for all n training samples since

Iw = 1 is enforced. For new observations outside the training set, the weights in the
denominator do not necessarily sum to 1. We always let the root node be a member
of the set Q, where the root node is defined as containing the entire predictor
space X . We demand that the weight of the root node is bounded from below
not by 0 as for all other nodes, but by a very small weight chosen here as 0.001
and converging to 0 for increasing sample sizes. The set Gx in (8) is then always
nonempty and the denominator in (8) is bounded from below by 0.001, although
it will typically be in the region of 1 for new observations. In the unlikely event
that a new observation is not part of any node except the root node, its prediction
will, according to (8), be the node mean of the root node. This is identical to the
mean response over all observations in the training data, a reasonable answer if a
new observation should fail to fall into any selected node.

2.3. Tuning parameters. The NH procedure requires only an initial set of
nodes Q. Once this set is specified, there are no further tuning parameters. It will
turn out that results are very insensitive to the actual choice of the set of nodes
as long as q = |Q| is sufficiently large and some complexity constraints, such as
maximal interaction order and minimal node size, are followed.

There are three essential characteristics of the set Q: the number of nodes, max-
imal interaction order and minimal node size. We discuss these constraints in the
following, but an advantageous aspect of the proposed method is that the method
is competitive in terms of predictive accuracy for the default choices proposed be-
low. In fact, all numerical results are computed with the same defaults parameters
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for maximal interaction order, which is set to 1, and minimal node size, which is
set to 5.

Number of nodes. It will be shown empirically for many data sets that the perfor-
mance is continuously improving the more nodes q = |Q| are added to the initial
set of nodes. Solving (7) gets clearly more costly as q increases. One should thus
use as many nodes as can be afforded computationally. Typically, q ranges in the
hundreds or thousands. All examples are calculated with q = 1000 nodes. It is
maybe surprising that there is practically no overfitting if q is chosen very large.
A first attempt at explaining this phenomenon can be found in Proposition 1.

Maximal interaction order. The maximal interaction order of node Qg is the
number of variables that are necessary to determine whether an observation is part
of a node or not. Main effects have thus an interaction order 1. To keep results as
interpretable as possible, a maximal interaction order of 2 (equivalent to a two-
factor interaction) is chosen for almost all examples.

Minimal node size. The minimal node size ming |{i : Xi· ∈ Qg}| has an influence
on the amount of smoothing. Allowing nodes with just a single observation, the
algorithm could simply interpolate all observed data by assigning weights of 1 to
the n nodes that contain each exactly one of the n observations. This is clearly
undesirable and a minimal node size of 5 is imposed throughout. Again, results
could be improved for some data sets by tuning this choice, yet the results show
that a choice of 5 gives very competitive results across a remarkably wide range of
data sets.

2.4. Node generation. To generate the desired nodes, one can generate nodes
at random, without use of the response variable. Alternatively, one can use a data-
adaptive choice by using nodes from a fitted tree ensemble. Results seem very
insensitive to this choice, but the latter method requires in general fewer nodes
in the initial set Q for a close to optimal predictive accuracy. We thus follow the
latter approach. The set Q is initially empty. A new tree is grown as proposed in
Breiman (2001) for each tree in a Random Forest (RF) ensemble. To speed up
computation and increase diversity of the set, the trees are fitted on subsamples of
the data of size n/10 rather than bootstrap samples. All the nodes of the tree that
satisfy the maximal interaction order and minimal node size constraint are added
to the set Q, provided that they are not already present in the set. While the size
of Q is less than the desired number q , the procedure is repeated. If two or more
nodes in Q contain exactly the same set of training observations, only a randomly
chosen one of them is kept.

2.5. Algorithm and dimensionality reduction. As stated above, the initial set
of nodes Q is generated with a Random Forests approach. After the desired num-
ber q of nodes have been obtained, it only remains to solve (7). This is a quadratic
program (QP) with linear constraints and could be solved with standard QP solvers.
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However, the specific structure of the problem can be used to reduce dimensional-
ity and make the computation more efficient.

We suppose that the root node, containing all observations, is the first among all
q = |Q| nodes. Let wroot be the vector wroot = (1,0,0, . . . ,0). Clearly, Iwroot = 1
componentwise, so the equality constraint in (7) is fulfilled for wroot. This means
that the difference ŵ − wroot between the actual solution and the ‘root’ solution
wroot lies in the nullspace NI ⊆ Rq of I. Let q̃ be the dimension of NI. Since I
is of rank at most min{q,n}, we have q̃ ≥ q − min{q,n}, and the nullspace NI
is guaranteed to be nontrivial (q̃ > 0) for q > n, that is, if there are more nodes
than actual observations, which we can always satisfy by generating sufficiently
many nodes. If the nullspace is nontrivial, then let B be the q × q̃-dimensional
matrix, where the kth column, with k = 1, . . . , q̃ , contains the kth basis vector
of an arbitrarily chosen orthonormal basis of NI. The solution to (7) can then be
written, using the argument above, for some d̂ ∈ Rq̃ as ŵ = wroot + Bd̂, and, to get
the same solution as in (7), d̂ is the solution to

d̂ = argmin
d

−2dT (MB)T (Y − Y) + dT (MB)T (MB)d
(9)

such that Bd ≥ −wroot,

where it was used that Mwroot = Y by definition of wroot. If a small ridge penalty
ν‖w‖2

2 on w is added to guarantee uniqueness of the solution, a term ν‖(wroot +
Bd)‖2

2 is added to the objective function in (9), where here always ν = 0.001 under
a standardized response with Var(Y) = 1. To also ensure that the weight of the
root node is bounded from below by the small chosen value 0.001 instead of 0, the
constraint Bd ≥ −wroot in (9) needs to be replaced by Bd ≥ −0.999wroot.

Thus, the original q-dimensional problem is reduced to a q̃ ≥ q − min{q,n}-
dimensional one. A price to pay for this is the computation of a basis for the
nullspace NI of I, which is achieved by a SVD of I. Compared to the savings
in the QP solution, computation of the SVD is, however, very much worthwhile.
The remaining QP problem (9) is solved with the QP solver of Goldfarb and Id-
nani (1983), as implemented in the package quadprog of the R-programming
language [R Development Core Team (2005)]. It is conceivable that an alternative
interior-point algorithm and especially explicit use of the sparse structure of the
matrixes M and I would generate additional computational savings, but, even so,
it took less than 10 seconds to solve (9) on data sets with less than 103 observa-
tions, using a 2.93 GHz processor and 8 GB of RAM.

2.6. Smoothing. NH can be seen as a smoothing operation in that Ŷ = SY for
a data-adaptive choice of the smoothing matrix S. The smoothing matrix is doubly
stochastic, symmetric and has nonnegative entries.

LEMMA 1. The fitted values Ŷ are obtained as a linear transformation Ŷ =
SY of the original data, where S is a doubly stochastic and symmetric matrix in
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that
∑

j Sij = 1 for all i = 1, . . . , n and
∑

i Sij = 1 for all j = 1, . . . , n. Moreover,
Sij ≥ 0 for all i, j = 1, . . . , n.

PROOF. The fitted values are for the n training observations given by Ŷ =
Mŵ, with M defined in (2). Therefore, Ŷi = ∑q

g=1 1{i ∈ Qg}ŵgµg , where i ∈ Qg

is a shorthand notation for Xi· ∈ Qg . Let ng = |{j : j ∈ Qg}| be the number of
samples in node g. Then µg = n−1

g

∑
j∈Qg

Yj by definition of the node means
and, hence, putting together,

Ŷi =
q∑

g=1

1{i ∈ Qg}ŵgn
−1
g

n∑

j=1

1{j ∈ Qg}Yj =
n∑

j=1

q∑

g=1

ŵg1{i, j ∈ Qg}
ng

Yj .

Defining matrix S ∈ Rn×n by its entries Sij = ∑
g ŵgn

−1
g 1{i, j ∈ Qg}, it follows

that (a) Ŷ = SY, (b) S is symmetric and (c) that all entries are nonnegative. It
remains to show that

∑
j Sij = 1 for all i = 1, . . . , n. The column sums follow

by symmetry. Now,
∑

j Sij = ∑
j

∑
g ŵgn

−1
g 1{i, j ∈ Qg} = ∑

g ŵg1{i ∈ Qg}. By
definition of the matrix I, the right-hand side

∑
g ŵg1{i ∈ Qg} is identical to the

ith coefficient in Iŵ. Since, componentwise, Iŵ = 1 by (7), it follows that indeed∑
j Sij = 1 for all i = 1, . . . , n, which completes the proof. !

From the lemma above, one can immediately derive that the mean Ŷ of the fitted
values is identical to the mean Y of the observed values. And the lemma above also
ensures that, irrespective of the size q of the initial ensemble, it is impossible to
fit the response exactly by interpolation if the minimal node size is strictly larger
than 1.

PROPOSITION 1. The mean of the fitted and observed values agree, Ŷ = Y.
Moreover, if the minimal node size is larger than 1, the weight of the root node
is strictly positive and Var(Y) )= 0, it holds for any strictly convex real-valued
function f that

n∑

i=1

f (Ŷi) <
n∑

i=1

f (Yi).(10)

PROOF. The first claim follows directly from Lemma 1 since Ŷ = SY and,
hence,

∑n
i=1 Ŷi = ∑n

i,j=1 Sij Yj = ∑n
j=1 Yj , where the last equality follows by

the fact that
∑

i Sij = 1 for all j = 1, . . . , n from Lemma 1. Likewise, observe
that Sij < 1 for all i, j = 1, . . . , n if the minimal node size is larger than 1. This
follows from the definition of S by the entries Sij = ∑

g ŵgn
−1
g 1{i, j ∈ Qg} since

more than 1 entry in each row-vector Si·, i = 1, . . . , n, has to be nonzero. Since the
sum of the row is constrained to

∑
j Sij = 1 and all entries in S are nonnegative,

all entries have got to be strictly less than 1. Moreover, if the weight of the root
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node is positive, all entries Si,j are strictly positive. Hence, for a strictly convex
function f ,

n∑

i=1

f (Ŷi) =
n∑

i=1

f

(
n∑

j=1

Sij Yj

)

<
n∑

i=1

n∑

j=1

Sij f (Yj ) =
n∑

j=1

f (Yj ),

having used Var(Y) )= 0 and the strict positivity of all entries of S in the inequality
and

∑
j Sij = 1 for all i = 1, . . . , n, from Lemma 1 in the last equality. !

The second part of the result can be obtained if the condition that the weight of
the root nodes is positive is replaced with the following weaker condition: there ex-
ists a pair of observations Yi ,Yj with Yi )= Yj such that both i and j are members
of a node Qg and the weight ŵg is strictly positive.

The proposition implies that the observed data cannot be interpolated exactly
by NH even though the number q of nodes might greatly exceed sample size n.

2.7. Related work. There has been substantial interest in the Random Forests
framework for classification and regression [Breiman (2001)], which builds partly
upon the randomized tree idea in Amit and Geman (1997). Lin and Jeon (2006)
interpreted Random Forests as an adaptive nearest neighbor scheme, with the
distance metric given by the grown tree ensemble. The same interpretation is
maybe even more imminent for NH since predictions are explicitly averages over
node means. Both bagging [Breiman (1996a)] and boosting [Freund and Schapire
(1996); Friedman, Hastie and Tibshirani (2000)] are possible alternative and pow-
erful techniques for growing multiple trees. If using either of these, predictions are
formed by averaging in a possibly weighted form across all grown trees. Results
are often difficult to interpret, though, as each of possibly hundreds of grown trees
consists in turn of multiple nodes and all variables in the data set are often in-
volved somewhere in the ensemble. The influence of individual variables can only
be measured indirectly for such tree ensembles; see Strobl et al. (2007) for a more
involved discussion. Despite a similar sounding name, ‘tree harvesting’ [Hastie
et al. (2001)], a regression technique commonly used in computational biology,
is not closely related to NH. An interesting machine learning technique is ‘stack-
ing’ [Wolpert (1992); Breiman (1996b)], which is weighting various classifiers and
weights are chosen by minimizing the error on weighted leave-one-out predictions.
In contrast to stacked trees, however, NH is not weighting whole trees but is work-
ing at the level of individual nodes by reweighting each node. In a similar spirit,
the ‘Rule Ensemble’ algorithm by Friedman and Popescu (2008) simplifies inter-
pretability of tree ensembles by selecting just a few nodes across all trees. Each
node is seen to form a binary indicator variable and the prediction is a linear com-
bination of all these indicator variables. In fact, for a given collection Q of nodes,
the matrix whose columns correspond to the binary indicator variables is exactly
the matrix defined as I in (5). The linear combination β of nodes is then sought in
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a Lasso-style way by putting a constraint on the !1-norm of the coefficient vector
[Tibshirani (1996); Chen, Donoho and Saunders (2001)],

β̂λ = argmin
β

‖Y − Iβ‖2 such that ‖β‖1 ≤ λ.(11)

The original variables can be added to the matrix I of binary indicator variables.
Despite the superficial similarity of ‘Rule Ensembles’ with NH, there are funda-
mental differences to the NH procedure (7). Choosing the right tuning parameter λ
is essential in (11), but no such tuning is necessary for NH. The inherent rea-
son for this is that NH imposes much stronger regularization by requiring in (8)
that predictions are weighted node means. NH is only selecting the weights w in
(7), whereas the vector β in (11) cannot be interpreted as the weight attached to
a particular node or rule. The sign and magnitude of the coefficient βg is thus
not directly related to the average response of observations in node g. A possible
advantage of NH is thus the interpretability of the predictions as weighted node
means. An example is shown in the breast cancer example in Figure 3. If a new
patient falls into only a single node, the NH prediction is simply the average re-
sponse in the group of patients, which is very easy to communicate and relate to the
actually observed data. If he or she falls into several groups, the prediction is the
weighted average across these groups. In terms of predictive power, rule ensem-
bles seem to be often better than NH and also Random Forests in our experience if
the signal-to-noise is high [Meinshausen (2009)]. The strength of NH is its ability
to cope well with very low signal-to-noise ratio data and the two approaches seem
complementary in this regard. Both ‘Rule Ensembles’ and NH can make use of a
dictionary of rules, which is currently built either randomly or by harvesting nodes
from existing tree ensembles such as Random Forests. More general nodes, such
as spheres under various metrics that are centered at training observations, could
conceivably help improve both methods.

3. Extensions. Node harvest (NH) can be extended and generalized in various
ways, as briefly outlined below. NH is shown to be directly applicable to binary
classification. Missing values can easily be dealt with, without using imputation
techniques or surrogate splits when predicting the response for new observations
with missing values. Finally, a regularization is proposed that can reduce the num-
ber of selected nodes.

3.1. Classification. For binary classification with Y ∈ {0,1}, the nonconvex
misclassification loss is typically replaced with a convex majorant of this loss func-
tion [Bartlett, Jordan and McAuliffe (2003)]. One of these possible convex loss
functions is the L2-loss, as used for classification in Yu and Bühlmann (2003).

Simply applying the previous QP problem (7) on binary data leads to a pre-
diction Ŷ (x) at a new data point x which is identical to (8). The node means µg ,
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g = 1, . . . , q , are now equivalent to the fraction of samples in class “1” among all
samples in node Qg ,

µg = |{i : Xi· ∈ Qg and Yi = 1}|
|{i : Xi· ∈ Qg}|

.

The NH predictions are naturally in the interval [0,1]. Use of the L2-loss as a
convex surrogate for misclassification error is thus not only appropriate for NH,
it is even beneficial since it allows for an interpretation of the predictions Ŷ (x) as
weighted empirical node means.

3.2. Missing values. An interesting property of NH is its natural ability to
cope with missing values. Once a fit is obtained, predictions for new data can be
obtained without use of imputation techniques or surrogate splits. To fit the node
harvest estimator with missing data, we replace missing values in the matrix X
by the imputation technique described in Breiman (2001) and Liaw and Wiener
(2002) and proceed just as previously.

Suppose then that the node harvest estimator is available and one would like to
get a prediction for a new observation Xi· that has missing values in some vari-
ables. We still calculate the prediction as the weighted mean (8) over all nodes
of which the new observation is a member. The question is whether observation i
is part of node Qg ∈ Q if it has missing values in variables that are necessary to
evaluate group membership of node Qg . The simplest and, as it turns out, effective
solution is to say that i is not a member of a node if it has missing values in vari-
ables that are necessary to evaluate membership of this node. To make this more
precise, let Qg be a node

Qg = {
x ∈ X : xk ∈ I

(g)
k for all k ∈ {1, . . . , p}},

and let Kg ⊆ {1, . . . , p} be the set of variables that are necessary and sufficient to
evaluate node membership [sufficient in the sense that I

(g)
k is identical to the entire

support of xk for all k /∈ Kg and necessary in the sense that I
(g)
k is not identical to

the support of xk for all k ∈ Kg]. If x has missing values, we define

x ∈ Qg if and only if, for all k ∈ Kg,xk is not missing and xk ∈ I
(g)
k .

Since we usually only work with main effects and two-factor interactions, all
nodes require only one or two variables to evaluate node membership. Even with
missing values in Xi,·, observation i can still be a member of many nodes in Q,
namely, those that involve only variables where the ith observation has nonmissing
values. In the most extreme case, all variables are missing from a new observation.
The observation will then only be a member of the root node and the prediction is
the node mean of the root node, which is the mean of the response variable across
all training observations, maybe not an unreasonable answer in the absence of any
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information. In more realistic cases, the new observation will have some nonmiss-
ing variables and be a member of more than the root node and the prediction will
be more refined. With trees, a similar idea would amount to dropping a new obser-
vation down a tree and stopping at the first node where the split-variable is missing.
The prediction would then naturally be the mean response of observations within
this node. However, if the variables on which the root node is split are missing, the
predicted response will be the mean across all observations. This situation occurs
for NH only typically if all variables are missing. The use of surrogate variables
[Breiman et al. (1984)] is thus paramount for trees, while NH can take a more
direct approach.

3.3. Regularization. There is so far no tuning parameter in the NH procedure
apart from the choice of the large initial set Q of nodes. And results are rather
insensitive to the choice of Q as long as it is chosen large enough, as shown in the
next section with numerical results.

Even though often not necessary from the point of predictive accuracy, the
method can be regularized to further improve interpretability. Here it is proposed
to constrain the average number of samples in each node. From the outset, the
minimal node size of 5 ensures that the average fraction of samples in each node is
above 5/n. Even so, one might not like to select many nodes that contain only
a handful of observations. The fraction of samples in node g is ng/n and the
weighted mean across all nodes is

∑
g ŵg(ng/n)

∑
ŵg

,(12)

where ng = |{j : j ∈ Qg}| is again the number of samples in node g. Since Iŵ = 1
by (7), we have, by summing over the rows of this equality,

n =
n∑

i=1

q∑

g=1

Iigŵg =
q∑

g=1

ŵg

n∑

i=1

Iig =
q∑

g=1

ŵgng,

where the last equality stems from the definition of matrix I in (5). The nominator
in (12) is thus 1 and the weighted average fraction of samples (12) within nodes is,
maybe surprisingly, equal to the inverse of the !1-norm of the weight vector ŵ,

∑
g ŵg(ng/n)
∑

g ŵg
= 1

∑
g ŵg

= ‖ŵ‖−1
1 .(13)

Constraining the !1-norm of ŵ to be less than a positive value of λ ∈ [1,∞] con-
strains thus the average fraction of samples (13) to be at least 1/λ. For λ= 1, every
node with nonzero weight has to contain all n samples and only the root node is
thus selected for λ= 1. At the other extreme, let m be the minimal node size (here
m = 5). For λ > n/m, the constraint will have no effect at all, since all nodes
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have ng ≥ m anyhow and the average weighted fraction (13) is thus bounded from
below by m/n for all weight vectors. The regularized estimator ŵλ solves then

ŵλ = argmin
w

‖Y − Mw‖2

(14)
such that Iw = 1 and w ≥ 0 and ‖w‖1 ≤ λ

instead of (7). The interesting region is λ ∈ [1,m/n], where m is the enforced
lower bound on node size. From the point of predictive accuracy, constraining λ
is usually not beneficial unless the signal-to-noise ratio is very low. There is thus
a tradeoff between sparsity (number of selected nodes) and predictive power, as
shown in the next section with numerical results.

4. Numerical results. For various data sets, we look at the predictive accu-
racy of node harvest (NH) and various related aspects like sensitivity to the size
of the initial set of nodes, interpretability and predictive power of results under
additional regularization as in (14).

4.1. Example I: Two-dimensional sinusoidal reconstruction. As a very sim-
ple first example, assume that the random predictor variable x = (x1,x2) is two-
dimensional and distributed uniformly on [0,1]2. and the response is generated
as

Y = sin(2πx1) sin(2πx2) + ε,(15)

where ε follows a normal distribution with mean 0 and variance 1/4 and the noise
is independent between observations. Taking n = 103 samples from (15), a re-
gression tree [Breiman et al. (1984)] is fitted to the data, using a cross-validated
choice of tree size penalty. The fit is constant on rectangular regions of the two-
dimensional space, as shown in Figure 1. Each of these regions corresponds to a
node in the tree. The fit is rather poor, however, and the structure of the problem is
not well captured. Random Forests is fitted with the default parameters proposed in
Breiman (2001). It improves in terms of predictive accuracy on trees, yet the con-
tour plot appears very noisy since the trees are grown until almost pure (keeping
only 10 observations in each node) and the variability of the Random Forests ap-
proach manifests itself here in a high spatial variability of the fitted function. NH is
fitted with the default parameters used throughout (1000 random nodes generated
picked from a Random Forest fit, two-factor interactions and minimal node size of
10). It gives a comparably clean contour plot, as seen in the rightmost panel of Fig-
ure 1 and forms a compromise between trees and Random Forests. In contrast to
trees, the fitted function is not constant across rectangular-shaped subspaces since
each observation can fall into more than one node.
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(a) (b)

(c) (d)

FIG. 1. (a) Contour plot of E(Y ) under model (15) in the two-dimensional predictor space, with
contour lines at values −1 to 1 with step sizes of 0.2. The contour plot for the fit of a regression
tree (b), a Random Forest fit (c) and node harvest (d). The three methods are fitted using the same
103 observations from (15).

4.2. Example II: Importance sampling in climate modeling. The climatepre-
diction.net project [Allen (1999)] is, broadly speaking, concerned with uncertainty
analysis of climate models, using a distributed computing environment. A climate
model contains typically several parameters whose precise values are only known
up to a certain precision. The project analyzes the behavior of a coarse resolution
variant of the HadCM3 climate model [Johns et al. (2003)] under thousands of
small perturbations of the default parameters. Once a certain number of models
has been sampled, the behavior of the underlying climate model can be better un-
derstood and importance sampling can be used to sample only in relevant sections
of the parameter space. While Gaussian process emulation is widely used in this
context [Oakley and O’Hagan (2004)], we note that the data here are not noise
free since the outcome depends on the random initial conditions and a standard
regression analysis of the model is hence useful. Without giving a full explanation,
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we show an example of a data set containing 250 models, each run with a different
combination of 29 parameters. The response variable is mean temperature change
over a 50 year period under a given emissions scenario.

Following the approach laid out above, 1000 nodes are generated with a Ran-
dom Forest type approach. All of these nodes are constrained to contain at least
10 observations and have at most two-factor interactions. Then the quadratic pro-
gram (7) is applied. Only 14 of the originally 1000 nodes receive a nonzero weight
and these nodes are shown in Figure 2.

The plot is very interpretable: the position of each node on the x-axis corre-
sponds to the mean of all training observations in this node. And predictions for
new data are simply the weighted mean across all nodes the new observation falls
into. The weight of each node is proportional to the area with which it is plotted.

FIG. 2. The 14 nodes selected by node harvest for the climateprediction.net data. The area of
each node g is proportional to the weight ŵg it received in (7). The 4986 nodes that received a
zero weight are not shown. The position on the x-axis shows for each node g the mean µg of all
training observations that fall into it, while the position on the y-axis shows how many observations
it contains. If observations of a node are a subset of observations of another node, a line between
the two nodes is drawn. The node “entcoef ≥ 2” contains a subset of the observations of the node
“entcoef ≥ 0.8.” A single new observation was chosen at random and the 5 nodes that the new
observation falls into are lighter and annotated. The prediction for the new observation is then simply
the weighted mean across the x-axis positions of the annotated nodes.
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To give an example of a prediction, a new observation is sampled at random. It
happens to fall into five nodes, whose respective weights and node means are as
follows:

entcoef ≥ 2 entcoef ≥ 2 num_star ≤ 5.5 ·105

Node g ct ≥ 7.5 ·10−5 rhcrit ≥ 1.5 entcoef ≥ 2 rhcrit ≥ 2.5 entcoef ≥ .8

Mean µg 1.98 1.97 1.94 2.30 2.14
Weight ŵg 0.37 0.24 0.21 0.11 0.06

Four of these nodes contain the entrainment coefficient (entcoef ) as a split variable,
which is maybe unsurprising since the entrainment coefficient is known to be the
parameter to which the model is most sensitive.

The new observation belongs also to the root node (as do all observations),
with the minimal imposed weight 0.001 for this node, but this influence is negligi-
ble and ignored here. The predicted response for this new observation is then the
weighted mean across these nodes, which is 2.014. A graphical visualization of
this weighted averaging is immediate from Figure 2. The prediction for this new
observation (or rather model) is simply the weighted horizontal position of the 5
selected and annotated nodes, with weights proportional to node size. As will be
seen further below, the predictive accuracy of NH is for this data set better than
cross-validated trees, even though no tuning was used in the NH approach and the
result is at least as interpretable and simple as a tree. To get optimal predictive
performance, a tree needs to employ interactions up to fourth order while NH gets
a better accuracy with only two-factor interactions.

4.3. Example III: Wisconsin breast cancer data. As an example of binary clas-
sification, take the Wisconsin breast cancer data [Mangasarian, Street and Wol-
berg (1995)]. There are 10 clinical variables to predict whether a tumor is benign
or malignant. Applying NH again with 1000 RF-generated nodes, with at most
two-factor interactions and a minimal node size of 10, the results in Figure 3 are
obtained. The root node is again not shown, despite its small enforced positive
weight of 0.001. The position on the x-axis gives for each node the percentage of
people within this group that had a malignant tumor (Y = 1). The y-axis position
is proportional to the number of people within this node in the training sample.
A new patient falls into one or several of these nodes and the predicted probabil-
ity of class Y = 1 for this patient is simply the weighted average over the means
µg of all nodes g the patient is part of, as shown for a randomly chosen example
patient in Figure 3. A prediction (or risk assessment in the example) is thus easy
to communicate and can be related to the empirical outcome in relevant groups of
patients with similar characteristics.
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FIG. 3. Node harvest (NH) estimator for the Wisconsin Breast Cancer study. 22 nodes are se-
lected, where the number of patients within each node is shown on the vertical scale. The percentage
of patients with a malignant tumor (Y = 1) is shown for each node on the horizontal scale. The
number of patients within each node is shown on the vertical scale. The size of nodes is again plot-
ted proportional to the weights chosen by NH. A new patient was randomly selected and belongs
to the 6 lighter and annotated nodes. Among these, there are 5 ‘main effect’ nodes, with the addi-
tion of one ‘two-factor interaction’ node. All of the 6 selected groups of patients contain a large
fraction of people with a malignant tumor, with actual proportions varying between 83% for node
“Bare.nuclei ≥ 3.5;Marg.adhesion ≤ 3.5” to above 97% for node “bare.nuclei ≥ 5.5.” The esti-
mated probability for having a malignant tumor for this new patient is the weighted mean across the
percentages of people with a malignant tumor in these 6 groups of patients.

If splitting the data into two equally large parts and taking one part as training
and the other part as test data, and averaging over 20 splits, the misclassification
test error with NH is 3.6%, compared with 3.3% for Random Forests and 5.5% for
cross-validated classification trees. NH seems to perform better in a low signal-to-
noise ratio setting. If changing 20% of all labels in the training set, the performance
of Random Forests drops to 6.0% while NH maintains an accuracy of 4.4%. This
behavior is completely analogous to regression, as shown below.

4.4. Further data sets. Besides these examples, the method is applied to mo-
tif regression [Conlon et al. (2003)], where the task is to identify transcription
factor binding sites from gene expression measurements. The data set consist
of n = 2588 samples and p = 660 genes and the response variable is the con-
centration of the transcription factor. In addition, the well-known abalone data
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[Nash et al. (1994)], with p = 8, are considered, as are the diabetes data from
Efron et al. (2004) (‘diabetes,’ p = 10, n = 442) and the LA Ozone data (‘ozone,’
p = 9, n = 203), bone mineral density data (‘bones,’ p = 4, n = 485), fuel ef-
ficiency data (‘mpg,’ p = 7, n = 392), median house prices in the Boston area
(‘housing,’ p = 13, n = 506), CPU performance data (‘machine,’ p = 7, n = 209),
crime rate data from the US census (‘crime,’ p = 101, n = 1993), and a data set
about prediction of Parkinson’s symptoms from voice measurements (‘parkinson,’
p = 19, n = 5875). The latter data sets are all available at the UCI machine learn-
ing repository [Asuncion and Newman (2007)]. We also consider a data set about
radial velocity of galaxies (‘galaxy,’ p = 4, n = 323) and prostate cancer analy-
sis (‘prostate,’ p = 8, n = 97), the latter all from Hastie, Friedman and Tibshirani
(2001), which contains more details, and, finally, a gene expression data set, kindly
provided by DSM nutritional products (Switzerland). For n = 115 samples, there
is a continuous response variable measuring the logarithm of riboavin (vitamin B2)
production rate of Bacillus Subtilis, and there are p = 4088 continuous covariates
measuring the logarithm of gene expressions from essentially the whole genome of
Bacillus Subtilis. Certain mutations of genes are thought to lead to higher vitamin
concentrations and the challenge is to identify those relevant genes via regression,
possibly using also interaction between genes. Observations with missing values
are removed from the data sets. Even though NH could deal with these, as alluded
to above, it facilitates comparison with other techniques.

Each data set is split 10 times into two equally large parts. On the half used as a
training set, NH is employed as well as Random Forests (RF), a CART regression
tree (TREE), Rule Ensembles (RE) and L2-boosted regression trees (L2B). For
NH, we select 1000 nodes from the Random Forest ensemble as described above,
keeping only main-effect and two-factor interaction nodes and a minimal node
size of 5. Then (7) is applied to this ensemble and exactly the same procedure is
followed for all data sets without any tuning of these parameters. The same initial
set of nodes is used for Rule Ensembles with a 5-fold CV-choice of the tuning
parameter. We remark that both NH and RE could perform better for some data
sets if higher order interactions were allowed in the nodes. For Random Forests,
one could fine tune the minimal node size or the value of mtry, which is the size
of the random number of variables used to find the optimal split point at each
node. However, they are kept at the default values (which are known to give nearly
optimal results), as proposed in Breiman (2001) and Liaw and Wiener (2002),
to give an equal comparison between the two essentially ‘tuning’-free algorithms
NH and RF. The size of the regression trees [Breiman et al. (1984)] is chosen by
10-fold CV on the training data. Boosting is using regression trees of depth two
as weak learners and a CV-optimized stopping time. The predictions on the test
data (the second part of the data) are then recorded for all three methods and the
fraction of the variance that is unexplained is averaged across all 10 sample splits.
The number of training observations available for each data set is shown in Table 1,
together with the average unexplained fraction of the variance.
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TABLE 1
Average proportion of unexplained variance on test data, rounded to two significant figures for

Random Forests (RF), CART trees (TREE), Node Harvest without regularization, λ= ∞, (NH∞),
Rule Ensembles (RE) and L2-boosted regression trees (L2B)

With additional
observational noise

Data set n p RF TREE RE L2B NH∞ RF TREE RE L2B NH∞

Ozone 203 12 0.27 0.41 0.31 0.33 0.34 0.55 >1 >1 0.67 0.47
Mpg 392 7 0.15 0.24 0.16 0.16 0.20 0.54 >1 0.47 0.39 0.36
Servo 166 4 0.32 0.38 0.20 0.37 0.26 0.61 0.94 0.73 0.88 0.57
Prostate 97 8 0.53 0.68 0.61 0.63 0.58 >1 >1 >1 >1 >1
Housing 506 13 0.14 0.30 0.18 0.19 0.25 0.46 >1 0.66 0.48 0.39
Diabetes 442 10 0.55 0.71 0.58 0.57 0.59 0.74 >1 >1 0.74 0.65
Machine 209 7 0.16 0.58 0.86 0.43 0.27 0.84 >1 >1 0.56 0.54
Galaxy 323 4 0.036 0.094 0.045 0.049 0.065 0.53 0.81 0.35 0.33 0.26
Abalone 4177 8 0.45 0.56 0.52 0.48 0.60 0.64 0.65 0.59 0.56 0.61
Bones 485 3 0.71 0.79 0.73 0.73 0.70 0.83 >1 0.98 0.88 0.85
Cpdn 493 29 0.52 0.66 0.55 0.68 0.66 0.98 >1 0.98 0.98 0.77
Motifs 2587 666 0.67 0.87 0.72 0.71 0.78 0.83 >1 >1 0.84 0.80
Vitamin 115 4088 0.35 0.55 0.40 0.38 0.37 0.78 >1 >1 0.99 0.98
Crime 1993 101 0.34 0.47 0.38 0.36 0.42 0.46 0.70 0.49 0.46 0.45
Parkinson 5875 19 0.20 0.33 0.53 0.63 0.69 0.43 0.68 0.60 0.76 0.69

Notes: The best performing method is shown in bold, while the worst performing method is shown
in italics. A result ‘>1’ indicates that the prediction is worse on test data than the best constant
prediction.

On most data sets, Random Forests has the highest predictive accuracy with
the exception of ‘servo’ and ‘bones,’ where NH is coming on top. A single tree
is, maybe unsurprisingly, consistently the worst performing method. The picture
changes if additional noise is added to the training observations. To this end, the
response vector Y is replaced on the training observations with the response Y+ε,
where ε = (ε1, . . . , εn) contains i.i.d. standard normal noise with variance three
times the variance of Y, cutting the correlation between the true unknown signal
and the response exactly in half. As can be seen in the right part of the table, NH is
now the best performing method on the clear majority of these low signal-to-noise
ratio data, sometimes outperforming all other approaches by a substantial margin.

Figure 4 shows the impact that the number of nodes in the initial set Q has on
predictive accuracy: the more nodes in Q, the better the predictive accuracy on test
data. Even though Figure 4 shows this phenomenon only up to a few thousands of
nodes, it holds well beyond this point. In other words, NH does not seem to overfit
if more and more nodes are added to the initial set of nodes and it is ideal to include
as many nodes as computationally feasible in Q, even though a few hundred seem
to be sufficient for most data sets.
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FIG. 4. The unexplained variance on test data as a function of the number q of nodes in the initial
set of nodes (x-axis in log-scale). Each line corresponds to one data set. Close to optimal perfor-
mance is reached after a few hundred nodes, with results continuing to improve slightly thereafter.

A crude measure for the complexity of a tree or tree ensembles is the total num-
ber of nodes of the predictor, which is equivalent to the total number of leaf nodes
for tree ensembles and the total number of nodes with nonzero weights or coef-
ficients for NH and RE respectively. Table 2 shows that NH (with λ = ∞) and
RE use roughly a similar amount of nodes in the final fit, typically a few dozen,
while NH with regularization yields the sparsest results in general, with the obvi-
ous exception of single trees, as seen in the following Table 3. Boosting leads to
hundreds and Random Forests to thousands or even hundreds of thousands of final
leaf nodes. The greater sparsity of NH and RE comes at a higher computational
price. Starting from the same number of initial nodes, NE and RE are more com-
putationally intensive to compute than all other methods, with a slight edge for
NH, especially for data sets with a larger sample size. While it is faster to fit RF
than either RE or NH, it should be emphasized that, due to much fewer used nodes,
NH and RE are clearly very fast for predicting the response of new observations,
which can be of importance in an online prediction setting, where RF can be too
slow for some applications.

Last, the effect of regularization (14) on the sparsity of the solution and predic-
tive accuracy is examined. Results are summarized in Table 3, where the uncon-
strained estimator is compared for all previous data sets with the regularized esti-
mator at λ= 3. Unsurprisingly, regularization always improves the sparsity of the
solution. The average number of selected nodes can decrease by a potentially sub-
stantial amount if applying the additional regularization, improving interpretabil-
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TABLE 2
Average number of nodes for each tree-based predictor (left half) and the average computational

time necessary to fit the predictor in seconds (right half), rounded to two significant figures

Number of leaf nodes Computational time (s)

Data set n p RF TREE RE L2B NH∞ RF TREE RE L2B NH∞

Ozone 203 12 >104 6.7 32 98 97 0.15 0.016 11 0.57 25
Mpg 392 7 >104 8 38 150 56 0.17 0.015 28 0.53 8.6
Servo 166 4 >104 2.9 21 110 20 0.074 0.0098 3.8 0.27 3.2
Prostate 97 8 >104 3.9 20 71 52 0.22 0.01 2.8 0.27 8.8
Housing 506 13 >104 8.3 60 130 74 0.36 0.025 84 0.53 24
Diabetes 442 10 >104 12 36 96 75 0.26 0.019 57 0.5 31
Machine 209 7 >104 3.6 62 420 47 0.24 0.011 9 0.34 6.7
Galaxy 323 4 >104 5.8 49 170 52 0.19 0.0098 19 0.35 8.6
Abalone 4177 8 >104 11 74 150 53 5.8 0.16 520 0.76 38
Bones 485 3 >104 10 27 67 30 0.15 0.011 20 0.45 4.6
Cpdn 493 29 >104 13 44 82 24 0.42 0.041 35 0.71 4.8
Motifs 2587 666 >104 15 68 120 64 140 11 470 100 86
Vitamin 115 4088 >104 4.7 43 230 70 2.5 0.92 4.6 170 75
Crime 1993 101 >104 11 59 140 71 12 0.83 220 3 21
Parkinson 5875 19 >104 24 97 100 15 16 0.53 920 1.4 44

ity. Predictive accuracy is typically very similar between the two estimators, with
an advantage for the unconstrained estimator for the original data sets. Regular-
ization seems to improve the already very good performance of NH in the low
signal-to-noise ratio setting where additional noise is applied to the training data.
Overall, the unconstrained estimator seems a very good default choice. Apply-
ing the additional regularization is worthwhile if the results are desired to be very
sparse or the signal in the data is extremely weak.

5. Discussion. The aim of node harvest (NH) is to combine positive aspects
of trees on the one hand and tree ensembles such as Random Forests on the other
hand.

NH shares with trees the ease of interpretability and simplicity of results. As
with trees, only a few nodes are used. For trees, every observation falls exactly
into one such node and the predicted response is the corresponding node mean.
With NH, nodes can overlap and an observation can be a member of a few nodes.
While trees often have to include higher order interactions to achieve their optimal
predictive performance, it is often sufficient for NH to include main effects and
two-factor interactions. While tree size is determined by cross-validation, essen-
tially no tuning parameter and no cross-validation is necessary for NH.

The lack of a very important tuning parameter is thus a common feature of
both NH and Random Forests. Predictive accuracy also seems comparable. For
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TABLE 3
Average proportion of unexplained variance and average number of selected nodes for the

unrestricted node harvest estimator (λ= ∞) and the regularized estimator (λ= 3), where the
average fraction of samples in each node has to be larger than λ−1 = 1/3. The better performing

method is again shown in bold

With additional noise

Unexpl. variance No. selected nodes Unexpl. variance No. selected nodes

Data set λ = ∞ λ = 3 λ = ∞ λ = 3 λ = ∞ λ = 3 λ = ∞ λ = 3

Ozone 0.34 0.34 97 73 0.47 0.48 100 95
Mpg 0.20 0.24 56 37 0.36 0.34 35 34
Servo 0.26 0.27 20 11 0.57 0.49 23 17
Prostate 0.58 0.57 52 47 >1 0.98 53 47
Housing 0.25 0.28 74 40 0.39 0.41 69 46
Diabetes 0.59 0.61 75 55 0.65 0.66 96 96
Machine 0.27 0.26 47 35 0.54 0.48 42 40
Galaxy 0.065 0.097 52 32 0.26 0.24 44 33
Abalone 0.60 0.63 53 38 0.61 0.63 39 28
Bones 0.70 0.70 30 22 0.85 0.83 30 24
Cpdn 0.66 0.68 24 18 0.77 0.79 48 36
Motifs 0.78 0.78 64 46 0.80 0.80 54 42
Vitamin 0.37 0.39 70 60 1.00 0.85 71 66
Crime 0.42 0.44 71 44 0.45 0.48 59 46
Parkinson 0.69 0.71 15 12 0.69 0.73 22 18

high signal-to-noise ratio data, Random Forests seems to have an edge while NH
delivers typically a smaller loss if the signal-to-noise ratio drops to lower values.
The general advantage of NH over Random Forests is simplicity and arguably
much better interpretability of results.

In common with both trees and tree ensembles, NH can handle mixed data
very well and is invariant under monotone transformations of the data. NH is,
moreover, able to deal with missing values without explicit use of imputation or
surrogate splits. Both regression and classification are handled naturally and it is
conceivable that the method can also be extended to censored data, in particular,
survival analysis, in analogy to the extension of Random Forests to Random Sur-
vival Forests [Ishwaran et al. (2006)]. Most of the functionality of node harvest is
implemented in the package nodeHarvest for the R-programming language [R
Development Core Team (2005)].
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