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We congratulate Lee, Nadler and Wasserman (henceforth LNW) on a
very interesting paper on new methodology and supporting theory. Treelets
seem to tackle two important problems of modern data analysis at once. For
datasets with many variables, treelets give powerful predictions even if vari-
ables are highly correlated and redundant. Maybe more importantly, inter-
pretation of the results is intuitive. Useful insights about relevant groups of
variables can be gained.

Our comments and questions include: (i) Could the success of treelets be
replicated by a combination of hierarchical clustering and PCA? (ii) When
choosing a suitable basis, treelets seem to be largely an unsupervised method.
Could the results be even more interpretable and powerful if treelets would
take into account some supervised response variable? (iii) Interpretability of
the result hinges on the sparsity of the final basis. Do we expect that the
selected groups of variables will always be sufficiently small to be amenable
for interpretation?

1. Treelets or hierarchical clustering combined with PCA. A main part of
the treelet algorithm achieves two main objectives:

(1) Variables are ordered in a hierarchical scheme. Highly correlated variables are
typically “close” in the hierarchy.

(2) A basis on the tree is chosen. Each node of the tree is associated with a “sum”
(and also a “difference” variable).

Clearly, treelets are more elegant than any method trying to achieve these two
goals separately. As LNW write in Section 1: “The novelty and contribution of our
approach is the simultaneous construction of a data-driven multi-scale orthogonal
basis and a hierarchical cluster tree.” We are left wondering, though, how different
treelets are to the following scheme. First, variables are ordered in a hierarchical
clustering scheme—for concreteness, under complete linkage and using similar-
ities derived from absolute correlations as in (1). Second, a basis on the tree is
found. For each node in the hierarchical clustering tree, the “sum” variable of the
treelet algorithm would be replaced by the first PCA component of the variables
represented by this node. Computationally, this scheme is clearly less efficient than
the treelet algorithm, at least if implemented naively. Are there other benefits of
taking steps (1) and (2) in one step as in the proposed treelet algorithm? It would

Received November 2007; revised November 2007.

478

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/08-AOAS137C
http://dx.doi.org/10.1214/07-AOAS137
http://www.imstat.org


DISCUSSION 479

be nice to see whether the tree structure of treelets differs substantially from a hi-
erarchical cluster tree, and whether the treelets bases are very different from local
PCA. Unfortunately, we did not obtain the treelet software from LNW, and that is
the main reason why we did not pursue our own numerical experiments.

2. Supervised and unsupervised basis selection. In addition to contribu-
tions (1) and (2), treelets involve an additional step:

(3) Cut the hierarchical tree at some height, and work with the resulting basis. The
chosen height is based on a clever score function; see formula (6).

The choice of the cut-point influences the “resolution” at which one is looking at
the data. At one extreme (the leaves of the tree, “high resolution”), all variables
are individual basis vectors. At the other extreme (the root of the tree, “low reso-
lution”), basis vectors contain contributions from all variables, just like in global
PCA. We understand the motivation behind the approach and the reported results
seem to be very favorable. For supervised problems with a response, we are won-
dering if information in the response variable could be used more extensively to
construct the treelet basis.

It is clear that a response variable should influence the choice of the basis. Take
an example. If the signal-to-noise ratio (SNR) is very low, then one might be more
inclined to work with “low resolution,” as there is no hope of recovering the re-
gression coefficients of individual variables. On the other hand, for high SNRs, it
might very well be possible to single out individual variables as important. Infor-
mation in the response variable could be used in various ways. Ranging from weak
use of the response to stronger involvement:

(a) Supervised choice of the cutoff height. The cutoff of the tree can be influenced
by the response. In fact, LNW used some supervised score function in Sec-
tion 5.1 and also some cross-validation (and hence, supervised) approach in
Section 5.3 to choose the best value for K , which in turn determines the cutoff
value for the tree through criterion (6). Another possibility for finding the best
cutoff in a supervised fashion would be to choose, instead of (6),

BL = arg min
B!:0≤!≤p−1

CV (B!),

where CV (B!) is the cross-validated loss of a favorite prediction method, us-
ing the orthogonal basis B! as predictor variables. Is it better to choose a value
of K , and having then an associated best K-basis, or should we rather choose a
best basis directly? Note that with the latter, we would also select features from
the basis if the prediction method would do variable selection, for example, the
Lasso or tree-based methods including boosting or random forests.

(b) Nonuniform cutoff height. For a given tree, it is not obvious why cutting at a
single height is necessarily optimal. As an example, take 2 predictor variables



480 N. MEINSHAUSEN AND P. BÜHLMANN

xi and xj with i #= j who are quite correlated and both of them are strongly
relevant for prediction. They will tend to be merged quite early in the tree,
but we would like to keep them separate for interpretation and best predictive
performance (while we would like to merge as early as possible less correlated
clusters of variables that only have a weak influence on the response).
Instead of cutting the tree at a single height, it might be more advantageous to
start toward the root node of the tree. If a given cluster of variables turns out
to be important, one could try to add—in a forward selection manner—basis
elements from its sub-clusters. If descending deeper into the tree at a partic-
ular node improves prediction considerably, one would keep descending and
stop otherwise. The selected tree height would not be uniformly the same. The
resolution would be high in directions of strong signal and low in directions of
weak signal. For related procedures, see also Meinshausen (2008) or Goeman
and Mansmann (2008). And also “supervised harvesting” [Hastie, Tibshirani,
Botstein and Brown (2001)] has the property that features at different levels of
a hierarchical cluster tree are selected.

(c) Supervised tree growth. Take again the example in (b) of two rather corre-
lated predictor variables, who are merged quite early in the tree but contribute
both strongly to the response. A more principled way of dealing with the issue
would be to make the construction of treelets, that is, the tree and the bases,
supervised. Is it possible? [Besides doing the obvious, viz., to include the re-
sponse y as another variable, i.e., considering new data x̃ = (y, x).] To our
knowledge, there are not many methods for “supervised grouping.” It seems
to us that among the references in LNW, only the method in Dettling and
Bühlmann (2004) remains as “truly supervised,” while the elastic net approach
in Zou and Hastie (2005), which is supervised, is not extracting a group struc-
ture.

We think that it would be worthwhile to extend treelets in the direction of a
truly supervised algorithm both for improved prediction performance and better
interpretability.

3. Interpretability. One attractive property of treelets is the sparsity of the
solution (sparsity is here to be understood as few variables entering a basis vector).
Compared with global PCA, which includes contributions from all variables into
every basis vector, treelet basis vectors contain in general only a few variables in
each basis vector. This increases the interpretability of results dramatically.

There is clearly a tradeoff, though: increasing the sparsity increases inter-
pretability by performing variable selection among the treelet features. Increasing
sparsity increases at the same time, however, the variance of the solution. Mak-
ing the results very sparse carries, in general, the risk that the results are unstable.
We might see a completely different result on repeated measurements (or on re-
peated bootstrap samples). We would thus like to make the results “as sparse as
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possible, but not any sparser.” A very sparse yet unstable result is not suitable for
interpretation either.

What should we do if the selected groups of variables will be too large for
interpretation? For example, groups of genes of size more than 20 are often an
idea attractive to statisticians or computer scientists, but it is very likely that such
large groups will never be validated by biological experiments. Is the solution as
simple as cutting the tree at a level such that the group size is bounded by a value
which is desired for a specific application?

Bounding the maximal group size can potentially render the algorithm unstable.
As a possible solution to the sparsity–stability tradeoff, we can cut the tree at a
height that gives maximal sparsity of results under the condition that the obtained
groups of variables are—in some sense—stable under permutations of the data.
LNW show in Figure 3 some bootstrap confidence bands which are supported by
some asymptotic theory in Section 3.1. It would be interesting to have a more
complete way of visualizing the stability of the treelet procedure.

4. Conclusions. We think that treelets are a very interesting and promising
proposal for high-dimensional modern data analysis. Open-source high quality
software would be desirable: it would help promoting the method to a large com-
munity of users and researchers and it would allow reproducibility of results.
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